Skip to main content
Log in

Low-temperature-processed biocompatible Ag-HAp nanoparticles with anti-biofilm efficacy for tissue engineering applications

  • Original Paper: Sol-gel and hybrid materials for biological and health (medical) applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Biomaterial-associated infections are the major cause of implant failure and can also develop many years after implantation. Recent advances in nanotechnology and the development of new nano-materials have led to the design of anti-biofilm coatings on implant surfaces. In this study, the inhibition of biofilm formation on silver-doped hydroxyapatite (Ag-HAp) nanoparticles-coated glass slides is reported. Ag-HAp was synthesized using low-temperature-modified sol–gel method. The release of silver ions from the Ag-HAp reduced the adhesion and prevented formation of biofilms of Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa when studied over a 10-day period. These coatings released an initial high amount of silver ions followed by a slow and gradual release facilitating sustained anti-biofilm activity. This initial high release of silver is beneficial for reducing bacterial adhesion which is the first step in the development of a biofilm. The biocompatibility of silver-doped hydroxyapatite coatings has also been confirmed. As success or failure of an implant depends on the balance between host tissue integration and bacterial colonization, the competitive growth between the mammalian and bacterial cells by inoculating E. coli into actively growing MG63 osteosarcoma cells on Ag-HAp coatings has been investigated. This could mimic the peri-operative contamination model.

Graphical Abstract

Ag-HAp-coated slides exhibit anti-biofilm activity over a period of 10 days, while supporting the growth of osteosarcoma cells (MG63). Co-culturing of MG63 cells with bacteria showed healthy growth of MG63 cells and no growth of bacteria. HAp control did not support growth of MG63 cells in the presence of bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Trampuz A, Widmer AF (2006) Infections associated with orthopedic implants. Curr Opin Infect Dis 19(4):349–356

    Article  Google Scholar 

  2. Maathuis PG, Neut D, Busscher HJ, van der Mei HC, van Horn JR (2005) Perioperative contamination in primary total hip arthroplasty. Clin Orthop Relat Res 433:136–139

    Article  Google Scholar 

  3. Costerton J, Montanaro L, Arciola C (2005) Biofilm in implant infections: its production and regulation. Int J Artif Organs 28(11):1062–1068

    Google Scholar 

  4. Danese PN (2002) Antibiofilm approaches: prevention of catheter colonization. Chem Biol 9(8):873–880

    Article  Google Scholar 

  5. Mah T-FC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39

    Article  Google Scholar 

  6. Vasilev K, Cook J, Griesser HJ (2009) Antibacterial surfaces for biomedical devices. Expert Rev Med Devises 6(5):553–567

    Article  Google Scholar 

  7. Abdelghany SM, Quinn DJ, Ingram RJ, Gilmore BF, Donnelly RF, Taggart CC, Scott CJ (2012) Gentamicin-loaded nanoparticles show improved antimicrobial effects towards Pseudomonas aeruginosa infection. Int J Nanomed 7:4053

    Google Scholar 

  8. Wan Y, Raman S, He F, Huang Y (2007) Surface modification of medical metals by ion implantation of silver and copper. Vacuum 81(9):1114–1118

    Article  Google Scholar 

  9. Ersek RA, Denton DR (1984) Silver-impregnated porcine xenografts for treatment of meshed autografts. Ann Plast Surg 13(6):482–487

    Article  Google Scholar 

  10. MacKeen PC, Person S, Warner SC, Snipes W, Stevens S (1987) Silver-coated nylon fiber as an antibacterial agent. Antimicrob Agents Chemother 31(1):93–99

    Article  Google Scholar 

  11. Liedberg H, Lundeberg T (1990) Silver alloy coated catheters reduce catheter-associated bacteriuria. Br J Urol 65(4):379–381

    Article  Google Scholar 

  12. Bosetti M, Masse A, Tobin E, Cannas M (2002) Silver coated materials for external fixation devices: in vitro biocompatibility and genotoxicity. Biomaterials 23(3):887–892

    Article  Google Scholar 

  13. Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54(6):1019–1024

    Article  Google Scholar 

  14. Stobie N, Duffy B, McCormack DE, Colreavy J, Hidalgo M, McHale P, Hinder SJ (2008) Prevention of Staphylococcus epidermidis biofilm formation using a low-temperature processed silver-doped phenyltriethoxysilane sol–gel coating. Biomaterials 29(8):963–969

    Article  Google Scholar 

  15. Babapour A, Yang B, Bahang S, Cao W (2011) Low-temperature sol–gel-derived nanosilver-embedded silane coating as biofilm inhibitor. Nanotechnology 22(15):155602

    Article  Google Scholar 

  16. Naik K, Kowshik M (2014) Anti-biofilm efficacy of low temperature processed AgCl–TiO 2 nanocomposite coating. Mater Sci Eng C 34:62–68

    Article  Google Scholar 

  17. Stanić V, Janaćković D, Dimitrijević S, Tanasković SB, Mitrić M, Pavlović MS, Krstić A, Jovanović D, Raičević S (2011) Synthesis of antimicrobial monophase silver-doped hydroxyapatite nanopowders for bone tissue engineering. Appl Surf Sci 257(9):4510–4518

    Article  Google Scholar 

  18. Rameshbabu N, Sampath Kumar T, Prabhakar T, Sastry V, Murty K, Prasad Rao K (2007) Antibacterial nanosized silver substituted hydroxyapatite: synthesis and characterization. J Biomed Mater Res Part A 80(3):581–591

    Article  Google Scholar 

  19. Jadalannagari S, Deshmukh K, Ramanan SR, Kowshik M (2014) Antimicrobial activity of hemocompatible silver doped hydroxyapatite nanoparticles synthesized by modified sol–gel technique. Appl Nanosci 4(2):133–141

    Article  Google Scholar 

  20. Chen Y, Zheng X, Xie Y, Ding C, Ruan H, Fan C (2008) Anti-bacterial and cytotoxic properties of plasma sprayed silver-containing HA coatings. J Mater Sci Mater Med 19(12):3603–3609

    Article  Google Scholar 

  21. Jeon H-J, Yi S-C, Oh S-G (2003) Preparation and antibacterial effects of Ag–SiO 2 thin films by sol–gel method. Biomaterials 24(27):4921–4928

    Article  Google Scholar 

  22. Babapour A, Akhavan O, Azimirad R, Moshfegh A (2006) Physical characteristics of heat-treated nano-silvers dispersed in sol–gel silica matrix. Nanotechnology 17(3):763

    Article  Google Scholar 

  23. Jadalannagari S, More S, Kowshik M, Ramanan SR (2011) Low temperature synthesis of hydroxyapatite nano-rods by a modified sol–gel technique. Mater Sci Eng C 31(7):1534–1538

    Article  Google Scholar 

  24. Ciobanu CS, Iconaru SL, Chifiriuc MC, Costescu A, Le Coustumer P, Predoi D (2013) Synthesis and antimicrobial activity of silver-doped hydroxyapatite nanoparticles. BioMed Res Int 2013:916218. doi:10.1155/2013/916218

    Article  Google Scholar 

  25. Tsukamoto M, Ando Y, Noda I, Akiyama T, Eto S, Yonekura Y, Kawano S, Sonohata M, Miyamoto H, Mawatari M (2013) The hydroxyapatite coating containing silver inhibits the biofilm formation in a flow condition for two weeks. Bone Jt J 95(Supp. 15):352

    Google Scholar 

  26. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48(6):1511–1524

    Article  Google Scholar 

  27. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1):55–63

    Article  Google Scholar 

  28. Kim IS, Kumta PN (2004) Sol–gel synthesis and characterization of nanostructured hydroxyapatite powder. Mater Sci Eng B 111(2):232–236

    Article  Google Scholar 

  29. Brett DW (2006) A discussion of silver as an antimicrobial agent: alleviating the confusion. Ostomy/Wound Manag 52(1):34–41

    Google Scholar 

  30. Kumar R, Münstedt H (2005) Polyamide/silver antimicrobials: effect of crystallinity on the silver ion release. Polym Int 54(8):1180–1186

    Article  Google Scholar 

  31. Chaw K, Manimaran M, Tay FE (2005) Role of silver ions in destabilization of intermolecular adhesion forces measured by atomic force microscopy in Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 49(12):4853–4859

    Article  Google Scholar 

  32. Kalishwaralal K, BarathManiKanth S, Pandian SRK, Deepak V, Gurunathan S (2010) Silver nanoparticles impede the biofilm formation by Pseudomonas aeruginosa and Staphylococcus epidermidis. Colloids Surf B 79(2):340–344

    Article  Google Scholar 

  33. Krall D-IT (1999) A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection 27(1):S16–S23

    Article  Google Scholar 

  34. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193

    Article  Google Scholar 

  35. Gollwitzer H, Ibrahim K, Meyer H, Mittelmeier W, Busch R, Stemberger A (2003) Antibacterial poly (D, L-lactic acid) coating of medical implants using a biodegradable drug delivery technology. J Antimicrob Chemother 51(3):585–591

    Article  Google Scholar 

  36. Pavithra D, Doble M (2008) Biofilm formation, bacterial adhesion and host response on polymeric implants—issues and prevention. Biomed Mater 3(3):034003

    Article  Google Scholar 

  37. Stahl J-P, Dupon M, Dutronc H, Perpoint T (2010) Recommendations for bone and joint prosthetic device infections in clinical practice (prosthesis, implants, osteosynthesis). Med et mal Infect 40(4):185–211

    Article  Google Scholar 

  38. Dickinson GM, Bisno AL (1989) Infections associated with indwelling devices: concepts of pathogenesis; infections associated with intravascular devices. Antimicrob Agents Chemother 33(5):597

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Mr. Aarif, NIO, Goa, for their assistance with SEM and EDAX analysis and Dr. K. M. Paknikar, ARI, Pune, for help with AAS studies for silver release experiments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sutapa Roy Ramanan or Meenal Kowshik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deshmukh, K.R., Ramanan, S.R. & Kowshik, M. Low-temperature-processed biocompatible Ag-HAp nanoparticles with anti-biofilm efficacy for tissue engineering applications. J Sol-Gel Sci Technol 80, 738–747 (2016). https://doi.org/10.1007/s10971-016-4149-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4149-2

Keywords

Navigation