Skip to main content
Log in

Low-density, transparent aerogels and xerogels based on hexylene-bridged polysilsesquioxane with bendability

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Low-density, transparent aerogels based on a hexylene-bridged polysilsesquioxane ([O1.5Si–(CH2)6–SiO1.5] n ) network have been prepared for the first time via a simple sol–gel process. An optimized base-catalyzed one-step hydrolysis–polycondensation process of a bridged alkoxysilane precursor 1,6-bis(trimethoxysilyl)hexane in a low-polarity solvent N,N-dimethylformamide allows for the formation of a pore structure of a length scale of several tens nanometers, resulting in low-density, transparent aerogels after supercritical drying. Because of the incorporated organic moiety that bridges the silicon atoms in the network, these aerogels show higher flexibility and strength against compression and bending as compared to silica aerogel counterparts. In addition, minimizing the residual silanol groups in the network by a surface modification with hexamethyldisilazane has further improved resilience after compression and bending flexibility and strength, due to the decreased chance of the irreversible formation of the siloxane bonds upon compression. The resulting trimethylsilylated hydrophobic gels have been subjected to ambient pressure drying to obtain xerogels, resulting in low-density (0.13 g cm−3, 90 % porosity), transparent (71 % transmittance) xerogels. These results are promising for the development of transparent thermal superinsulators applicable to window insulating systems that manage heat transfer in a more efficient way.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Hüsing N, Schubert U (1998) Aerogels-airy materials: chemistry structure and properties. Angew Chem Int Ed 37:22–45

    Article  Google Scholar 

  2. Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265

    Article  Google Scholar 

  3. Du A, Zhou B, Zhang Z, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6:941–968

    Article  Google Scholar 

  4. Kanamori K (2013) Recent progress in aerogel science and technology. Adv Porous Mater 1:147–163

    Article  Google Scholar 

  5. Kistler SS (1931) Coherent expanded aerogels and jellies. Nature 127:741

    Article  Google Scholar 

  6. Soleimani Dorcheh A, Abbasi MH (2008) Silica aerogels; synthesis properties and characterization. J Mater Process Tech 199:10–26

    Article  Google Scholar 

  7. Baetens R, Jelle BP, Gustavsen A (2011) Aerogel insulation for building applications: a state-of-the-art review. Energy Build 43:761–769

    Article  Google Scholar 

  8. Koebel M, Rigacci A, Achard PJ (2012) Aerogel-based thermal superinsulation: an overview. J Sol–Gel Sci Technol 63:315–339

    Article  Google Scholar 

  9. Randall JP, Meador MAB, Jana SC (2011) Tailoring mechanical properties of aerogels for aerospace applications. ACS Appl Mater Interfaces 3:613–626

    Article  Google Scholar 

  10. Rao AV, Kulkarni MM, Amalnerkar DP, Seth T (2003) Superhydrophobic silica aerogels based on methyltrimethoxysilane precursor. J Non-Cryst Solids 330:187–195

    Article  Google Scholar 

  11. Rao AV, Bhagat SD, Hirashima H, Pajonk GM (2006) Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor. J Colloid Interface Sci 300:279–285

    Article  Google Scholar 

  12. Martín L, Ossó JO, Ricart S, Roig A, Garcíad O, Sastred R (2008) Organo-modified silica aerogels and implications for material hydrophobicity and mechanical properties. J Mater Chem 18:207–213

    Article  Google Scholar 

  13. Guo H, Nguyen BN, McCorkle LS, Shonkwiler B, Meador MAB (2009) Elastic low density aerogels derived from bis[3-(triethoxysilyl)propyl]disulfide tetramethylorthosilicate and vinyltrimethoxysilane via a two-step process. J Mater Chem 19:9054–9062

    Article  Google Scholar 

  14. Meador MAB, Fabrizio EF, Ilhan F, Dass A, Zhang G, Vassilaras P, Johnston JC, Leventis N (2005) Cross-linking amine-modified silica aerogels with epoxies: mechanically strong lightweight porous materials. Chem Mater 17:1085–1098

    Article  Google Scholar 

  15. Katti A, Shimpi N, Roy S, Lu H, Fabrizio EF, Dass A, Capadona LA, Leventis N (2006) Chemical physical and mechanical characterization of isocyanate cross-linked amine-modified silica aerogels. Chem Mater 18:285–296

    Article  Google Scholar 

  16. Mulik S, Sotiriou-Leventis C, Churu G, Lu H, Leventis N (2008) Cross-linking 3D assemblies of nanoparticles into mechanically strong aerogels by surface-initiated free-radical polymerization. Chem Mater 20:5035–5046

    Article  Google Scholar 

  17. Nakanishi K, Kanamori K (2005) Organic–inorganic hybrid poly(silsesquioxane) monoliths with controlled macro- and mesopores. J Mater Chem 15:3776–3786

    Article  Google Scholar 

  18. Dong H, Brook MA, Brennan JD (2005) A new route to monolithic methylsilsesquioxanes: gelation behavior of methyltrimethoxysilane and morphology of resulting methylsilsesquioxanes under one-step and two-step processing. Chem Mater 17:2807–2816

    Article  Google Scholar 

  19. Cao W, Hunt AJ (1994) Improving the visible transparency of silica aerogels. J Non Cryst Solids 176:18–25

    Article  Google Scholar 

  20. Emmerling A, Petricevic R, Beck A, Wang P, Scheller H, Fricke J (1995) Relationship between optical transparency and nanostructural features of silica aerogels. J Non Cryst Solids 185:240–248

    Article  Google Scholar 

  21. Lu X, Arduini-Schuster MC, Kuhn J, Nilsson O, Fricke J, Pekala RW (1992) Thermal conductivity of monolithic organic aerogels. Science 255:971–972

    Article  Google Scholar 

  22. Aravind PR, Shajesh P, Soraru GD, Warrier KGK (2010) Ambient pressure drying: a successful approach for the preparation of silica and silica based mixed oxide aerogels. J Sol–Gel Sci Technol 54:105–117

    Article  Google Scholar 

  23. Schwertfeger F, Schmidt DFM (1998) Hydrophobic waterglass based aerogels without solvent exchange or supercritical drying. J Non Cryst Solids 225:24–29

    Article  Google Scholar 

  24. Land VD, Harris TM, Teeters DC (2001) Processing of low-density silica gel by critical point drying or ambient pressure drying. J Non Cryst Solids 283:11–17

    Article  Google Scholar 

  25. Hæreid S, Anderson J, Einarsrud MA, Hua DW, Smith DM (1995) Thermal and temporal aging of TMOS-based aerogel precursors in water. J Non Cryst Solids 185:221–226

    Article  Google Scholar 

  26. Kanamori K, Aizawa M, Nakanishi K, Hanada T (2007) New transparent methylsilsesquioxane aerogels and xerogels with improved mechanical properties. Adv Mater 19:1589–1593

    Article  Google Scholar 

  27. Kanamori K, Nakanishi K, Hanada T (2009) Sol–gel synthesis porous structure and mechanical property of polymethylsilsesquioxane aerogels. J Ceram Soc Jpn 117:1333–1338

    Article  Google Scholar 

  28. Hayase G, Kanamori K, Nakanishi K (2012) Structure and properties of polymethylsilsesquioxane aerogels synthesized with surfactant n-hexadecyltrimethylammonium chloride. Microporous Mesoporous Mater 158:247–252

    Article  Google Scholar 

  29. Kurahashi M, Kanamori K, Takeda K, Kaji H, Nakanishi K (2012) Role of block copolymer surfactant on the pore formation in methylsilsesquioxane aerogel systems. RSC Adv 2:7166–7173

    Article  Google Scholar 

  30. Kanamori K (2014) Monolithic silsesquioxane materials with well-defined pore structure. J Mater Res 29:2773–2786

    Article  Google Scholar 

  31. Shea KJ, Loy DA (2001) Bridged polysilsesquioxanes. Molecular-engineered hybrid organic–inorganic materials. Chem Mater 13:3306–3319

    Article  Google Scholar 

  32. Hu LC, Shea KJ (2011) Organo–silica hybrid functional nanomaterials: how do organic bridging groups and silsesquioxane moieties work hand-in-hand. Chem Soc Rev 40:688–695

    Article  Google Scholar 

  33. Stein A, Melde BJ, Schroden RC (2000) Hybrid inorganic–organic mesoporous silicates—nanoscopic reactors coming of age. Adv Mater 19:1403–1419

    Article  Google Scholar 

  34. Hatton B, Landskron K, Whitnall W, Perovic D, Ozin GA (2005) Past present and future of periodic mesoporous organosilicas-the PMOs. Acc Chem Res 38:305–312

    Article  Google Scholar 

  35. Mizoshita N, Tani T, Inagaki S (2011) Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors. Chem Soc Rev 40:789–800

    Article  Google Scholar 

  36. Baugher BM, Loy DA, Prabakar S, Assink RA, Shea KJ, Oviatt H (1995) Porosity in hexylene-bridged polysilsesquioxanes. Effects of monomer concentration. Mater Res Soc Symp Proc 371:253–259

    Google Scholar 

  37. Loy DA, Jamison GM, Baugher BM, Russick EM, Assink RA, Prabakar S, Shea KJ (1995) Alkylene-bridged polysilsesquioxane aerogels: highly porous hybrid organic–inorganic materials. J Non Cryst Solids 186:44–53

    Article  Google Scholar 

  38. Boday DJ, Stover RJ, Muriithi B, Loy DA (2012) Mechanical properties of hexylene- and phenylene-bridged polysilsesquioxane aerogels and xerogels. J Sol–Gel Sci Technol 61:144–150

    Article  Google Scholar 

  39. Boday DJ, Stover RJ, Muriithi B, Loy DA (2011) Strong low density hexylene- and phenylene-bridged polysilsesquioxane aerogel-polycyanoacrylate composites. J Mater Sci 46:6371–6377

    Article  Google Scholar 

  40. Obrey KAD, Wilson KV, Loy DA (2011) Enhancing mechanical properties of silica aerogels. J Non Cryst Solids 357:3435–3441

    Article  Google Scholar 

  41. Wang Z, Dai Z, Wu J, Zhao N, Xu J (2013) Vacuum-dried robust bridged silsesquioxane aerogels. Adv Mater 25:4494–4497

    Article  Google Scholar 

  42. Yun S, Luo H, Gao Y (2015) Low-density hydrophobic highly flexible ambient-pressure-dried monolithic bridged silsesquioxane aerogels. J Mater Chem A 3:3390–3398

    Article  Google Scholar 

  43. Wang Z, Wang D, Qian Z, Guo J, Dong H, Zhao N, Xu J (2015) Robust superhydrophobic bridged silsesquioxane aerogels with tunable performances and their applications. ACS Appl Mater Interfaces 7:2016–2024

    Article  Google Scholar 

  44. Chujo Y, Saegusa T (1992) Organic polymer hybrids with silica gel formed by means of the sol–gel method. Adv Polym Sci 100:11–29

    Article  Google Scholar 

  45. Ogoshi T, Chujo Y (2005) Organic–inorganic polymer hybrids prepared by the sol–gel method. Compos Interfaces 11:539–566

    Article  Google Scholar 

  46. Nakanishi K (1997) Pore structure control of silica gels based on phase separation. J Porous Mater 4:67–112

    Article  Google Scholar 

  47. Cerveau G, Corriu RJP, Framery E (2000) Sol–gel process: influence of the temperature on the textural properties of organosilsesquioxane materials. J Mater Chem 10:1617–1622

    Article  Google Scholar 

  48. Loy DA, Obrey-DeFriend KA, Wilson KV Jr, Minke M, Baugher BM, Baugher CR, Schneider DA, Jamison GM, Shea KJ (2013) Influence of the alkoxide group solvent catalyst and concentration on the gelation and porosity of hexylene-bridged polysilsesquioxanes. J Non Cryst Solids 362:82–94

    Article  Google Scholar 

  49. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, San Diego, pp 373–384

    Google Scholar 

  50. Yokogawa H, Yokoyama M (1995) Hydrophobic silica aerogels. J Non Cryst Solids 186:23–29

    Article  Google Scholar 

  51. Shewale PM, Rao AV, Rao AP (2008) Effect of different trimethyl silylating agents on the hydrophobic and physical properties of silica aerogels. Appl Surf Sci 254:6902–6907

    Article  Google Scholar 

  52. Orgaz F, Rawson H (1986) Characterization of various stages of the sol–gel process. J Non Cryst Solids 82:57–68

    Article  Google Scholar 

  53. Ogata M, Kinjo N, Kawata T (1993) Effects of crosslinking on physical properties of phenol-formaldehyde Novolac cured epoxy resins. J Appl Polym Sci 48:583–601

    Article  Google Scholar 

  54. Kjøniksen AL, Nyström B (1996) Effects of polymer concentration and cross-linking density on rheology of chemically cross-linked poly(vinyl alcohol) near the gelation threshold. Macromolecules 29:5215–5222

    Article  Google Scholar 

  55. Xiong L, Hu X, Liu X, Tong Z (2008) Network chain density and relaxation of in situ synthesized polyacrylamide/hectorite clay nanocomposite hydrogels with ultrahigh tensibility. Polymer 49:5064–5071

    Article  Google Scholar 

  56. Soleimani Dorcheh A, Abbasi MH (2008) Silica aerogel; synthesis properties and characterization. J Mater Process Technol 199:10–26

    Article  Google Scholar 

  57. Kanamori K (2011) Organic–inorganic hybrid aerogels with high mechanical properties via organotrialkoxysilane-derived sol–gel process. J Ceram Soc Jpn 119:16–22

    Article  Google Scholar 

  58. Thorne-Banda H, Miller T (2011) In: Aegerter MA, Leventis N, Koebel MM (eds) Aerogels handbook. Springer, New York

    Google Scholar 

  59. Prakash SS, Brinker CJ, Hurd AJ, Rao SM (1995) Silica aerogel films prepared at ambient pressure by using surface derivatization to induce reversible drying shrinkage. Nature 374:439–443

    Article  Google Scholar 

  60. Scherer GW (1992) Stress development during supercritical drying. J Non Cryst Solids 145:33–40

    Article  Google Scholar 

Download references

Acknowledgments

The present study has been performed under financial supports from Grant-in-Aid for Scientific Research (No. 24550253 JSPS and MEXT Japan) and Advanced Low Carbon Technology Research and Development Program (ALCA, JST Japan).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Kanamori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aoki, Y., Shimizu, T., Kanamori, K. et al. Low-density, transparent aerogels and xerogels based on hexylene-bridged polysilsesquioxane with bendability. J Sol-Gel Sci Technol 81, 42–51 (2017). https://doi.org/10.1007/s10971-016-4077-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4077-1

Keywords

Navigation