Skip to main content
Log in

In situ growth of Ag nanoparticles in graphene–TiO2 mesoporous films induced by hard X-ray

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The controlled growth of Ag nanoparticles into graphene–TiO2 mesoporous films has been triggered by hard X-ray exposure provided by a synchrotron storage ring. The kinetic process has been studied by UV–visible spectroscopy as a function of the X-ray dose and compared to the nanoparticle growth induced in a bare mesoporous titania matrix. The graphene layers act as a preferential nucleation sites, allowing a faster nucleation of the nanoparticles. Moreover, the growth of larger nanoparticles is also promoted as a function of the exposure dose. The combined bottom-up and top-down approach to fabricate nanocomposites porous films embedding both graphene and plasmonic nanoparticles is expected to be a fundamental tool for the design of new analytical platforms based on the enhancement of the Raman signals.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Innocenzi P, Malfatti L, Carboni D (2015) Nanoscale 7:12759

    Article  Google Scholar 

  2. Malfatti L, Falcaro P, Pinna A, Lasio B, Casula MF, Loche D, Falqui A, Marmiroli B, Amenitsch H, Sanna R, Mariani A, Innocenzi P (2014) ACS Appl Mater Interfaces 6:795

    Article  Google Scholar 

  3. Carboni D, Lasio L, Loche D, Casula MF, Mariani A, Malfatti L, Innocenzi P (2015) J Phys Chem Lett 6:3149

    Article  Google Scholar 

  4. Innocenzi P, Malfatti L (2013) Chem Soc Rev 42:4198

    Article  Google Scholar 

  5. Carboni D, Lasio B, Alzari V, Mariani A, Loche D, Casula M F, Malfatti L, Innocenzi P (2014) Phys Chem Chem Phys 16:25809

  6. Costacurta S, Malfatti L, Innocenzi P, Amenitsch H, Masili A, Corrias A, Casula MF (2008) Micropor Mesopor Mater 115:338

    Article  Google Scholar 

  7. Hess DM, Naik RR, Rinaldi C, Tomczak MM, Watkins JJ (2009) Chem Mater 21:2125

    Article  Google Scholar 

  8. Buso D, Falcaro P, Costacurta S, Guglielmi M, Martucci A, Innocenzi P, Malfatti L, Bello V, Mattei G, Sada C, Amenitsch H, Gerdova I, Haché A (2005) Chem Mater 17:4965

    Article  Google Scholar 

  9. Besson S, Gacoin T, Ricolleau C, Jacquiod C, Boilot J-P (2002) Nano Lett 2:409

    Article  Google Scholar 

  10. Malfatti L, Marongiu D, Costacurta S, Falcaro P, Amenitsch H, Marmiroli B, Grenci G, Casula MF, Innocenzi P (2010) Chem Mater 22:2132

    Article  Google Scholar 

  11. Malfatti L, Falcaro P, Marmiroli B, Amenitsch H, Piccinini M, Falqui A, Innocenzi P (2011) Nanoscale 3:3760

    Article  Google Scholar 

  12. Fuertes MC, Marchena M, Marchi MC, Wolosiuk A, Soler-Illia GJAA (2009) Small 5:272

    Article  Google Scholar 

  13. Martínez ED, Bellino MG, Soler-Illia GJAA (2009) ACS Appl Mater Interfaces 1:746

    Article  Google Scholar 

  14. Innocenzi P, Malfatti L, Marmiroli B, Falcaro P (2014) J Sol-Gel Sci Technol 70:236

    Article  Google Scholar 

  15. Pinna A, Lasio B, Piccinini M, Marmiroli B, Amenitsch H, Falcaro P, Tokudome Y, Malfatti L, Innocenzi P (2013) ACS Appl Mater Interfaces 5:3168

    Article  Google Scholar 

  16. Innocenzi P, Malfatti L, Falcaro P (2012) Soft Matter 8:3722

    Article  Google Scholar 

  17. Falcaro P, Costacurta S, Malfatti L, Takahashi M, Kidchob T, Casula MF, Piccinini M, Marcelli A, Marmiroli B, Amenitsch H, Schiavuta P, Innocenzi P (2008) 20:1864

  18. Medda SK, Kundu D, De G (2003) J Non-Cryst Solids 318:149

    Article  Google Scholar 

  19. Green AA, Hersam MC (2010) J Phys Chem Lett 1:544

    Article  Google Scholar 

  20. Innocenzi P, Malfatti L, Lasio B, Pinna A, Loche D, Casula MF, Alzari V, Mariani A (2014) N J Chem 38:3777

    Article  Google Scholar 

  21. Malard LM, Pimenta MA, Dresselhaus G, Dresselhaus MS (2009) Phys Rep 473:51

    Article  Google Scholar 

  22. Falcaro P, Costacurta S, Malfatti L, Buso D, Patelli A, Schiavuta P, Piccinini M, Grenci G, Marmiroli B, Amenitsch H, Innocenzi P (2011) ACS Appl Mater Interfaces 3:245

    Article  Google Scholar 

  23. Bois L, Chassagneux F, Battie Y, Bessueille F, Mollet L, Parola S, Destouches N, Toulhoat N, Moncoffre N (2010) Langmuir 26:1199

    Article  Google Scholar 

  24. Gotoh K, Kinumoto T, Fujii E, Yamamoto A, Hashimoto H, Ohkubo T, Itadani A, Kuroda Y, Ishida H (2011) Carbon 49:1118

    Article  Google Scholar 

  25. Moon G, Kim H, Shinc Y, Choi W (2012) RSC Adv 2:2205

    Article  Google Scholar 

  26. Crepaldi EL, Soler-Illia GJAA, Grosso D, Cagnol F, Ribot F, Sanchez C (2003) J Am Chem Soc 125:9776

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the CERIC-ERIC consortium for the access to experimental facilities and financial support. Alberto Mariani is gratefully acknowledged for providing the EG colloidal suspensions. Maria F. Casula is also acknowledged for TEM characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Malfatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malfatti, L., Carboni, D., Pinna, A. et al. In situ growth of Ag nanoparticles in graphene–TiO2 mesoporous films induced by hard X-ray. J Sol-Gel Sci Technol 79, 295–302 (2016). https://doi.org/10.1007/s10971-016-4052-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4052-x

Keywords

Navigation