Skip to main content
Log in

Three-layer tri-wavelength broadband antireflective coatings built from refractive indices controlled silica thin films

  • Original Paper: Functional coatings, thin films and membranes (including deposition techniques)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A three-layer tri-wavelength broadband antireflective (AR) coating with 100 % transmittance simultaneously at 1064, 532 and 355 nm was designed using TFCalc™ thin film design software. The refractive indices for the bottom, middle and top layers of the designed AR coating are 1.33, 1.21 and 1.10, respectively. To realize the designed AR coating, a template-free sol–gel process was proposed to regulate the refractive index of silica film from 1.09 to 1.44 by simple hybridization. Silica films with refractive index of 1.21–1.44 were prepared by the hybridization of acid-catalyzed silica and base-catalyzed silica, while organically modified silicates films with refractive index of 1.09–1.21 were prepared by the hybridization of tetraethoxysilane, methyltriethoxysilane and hexamethyldisilazane under base-catalyzed condition. These two hybridization methods could conveniently control the porosity, and hence the refractive index of films. Finally, the three-layer tri-wavelength broadband AR coating, which is very important in high-power laser systems, was realized with the transmittance of 99.9, 99.8 and 99.4 % at 1064, 532 and 355 nm, respectively.

Graphical Abstract

A three-layer tri-wavelength broadband antireflection coating with nearly 100 % transmittance simultaneously at 1064, 532 and 355 nm is designed by TFCalc™ thin film design software and prepared by a simple sol–gel process. A template-free sol–gel process was proposed to prepare silica films with controlled and ultra-low refractive index.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sun J, Cui X, Zhang C, Zhang C, Ding R, Xu Y (2015) J Mater Chem C 3:7187–7194

    Article  Google Scholar 

  2. Zou L, Li X, Zhang Q, Shen J (2014) Langmuir 30:10481–10486

    Article  Google Scholar 

  3. Cai S, Zhang Y, Zhang H, Yan H, Lv H, Jiang B (2015) ACS Appl Mater Interfaces 6:11470–11475

    Article  Google Scholar 

  4. Mizoshita N, Ishii M, Kato N, Tanaka H (2015) ACS Appl Mater Interfaces 7:19424–19430

    Article  Google Scholar 

  5. Li X, Gross M, Oreb B, Shen J (2012) J Phys Chem C 116:18367–18371

    Article  Google Scholar 

  6. Sim D, Choi M, Hur Y, Nam B, Chae G, Park J, Jung Y (2013) Adv Opt Mater 1:428–433

    Article  Google Scholar 

  7. Yao L, He J (2014) Prog Mater Sci 61:94–143

    Article  Google Scholar 

  8. Zhang C, Zhang C, Sun J, Ding R, Zhang Q, Xu Y (2015) RSC Adv 5:56998–57005

    Article  Google Scholar 

  9. Xi J, Schubert M, Kim J, Shubert E, Chen M, Lin S, Liu W, Smart J (2007) Nat Photonics 1:176–179

    Google Scholar 

  10. Raut H, Ganesh V, Nair A, Ramakrishna S (2011) Energy Environ Sci 4:3779–3804

    Article  Google Scholar 

  11. Bernsmeier D, Polte J, Ortel E, Krahl T, Kemnitz E, Kraehnert R (2014) ACS Appl Mater Interfaces 6:19559–19565

    Article  Google Scholar 

  12. Liu L, Wang X, Jing M, Zhang S, Zhang G, Dou S (2012) Adv Mater 24:6318–6322

    Article  Google Scholar 

  13. Moses E, Campbell J, Stolz C, Wuest C (2003) SPIE 5001:1–15

    Google Scholar 

  14. Moses E (2009) Nucl Fusion 49:104022

    Article  Google Scholar 

  15. Thomas I (1986) Appl Opt 25:1481–1483

    Article  Google Scholar 

  16. Zhang X, Cai S, You D, Yan L, Lv H, Yuan X, Jiang B (2013) Adv Funct Mater 23:4361–4365

    Article  Google Scholar 

  17. Xiao B, Xia B, Lv H, Zhang X, Jiang B (2012) J Sol–Gel Sci Technol 64:276–281

    Article  Google Scholar 

  18. Ding R, Cui X, Zhang C, Zhang C, Xu Y (2015) J Mater Chem C 3:3219–3224

    Article  Google Scholar 

  19. Guillemot F, Brunet-Bruneau A, Bourgeat-Lami E, Gacoin T, Barthel E, Boilot J (2010) Chem Mater 22:2822–2828

    Article  Google Scholar 

  20. Yamaguchi M, Nakayama H, Yamada K, Imai H (2009) Opt Lett 34:2060–2062

    Article  Google Scholar 

  21. Falcaro P, Malfatti L, Kidchob T, Giannini G, Falqui A, Casula M (2009) Chem Mater 21:2055–2061

    Article  Google Scholar 

  22. Macleod H (1986) Thin film Optical Filters. London Adam Hilger, London

    Book  Google Scholar 

  23. Born M, Wolf E (1980) Principles of Optics. Pergamon, Oxford

    Google Scholar 

  24. Berreman D (1972) J Opt Soc Am 62:502–510

    Article  Google Scholar 

  25. Thomas I (1992) Appl Opt 31:6145–6149

    Article  Google Scholar 

  26. Zhang Y, Zhao C, Wang P, Ye L, Luo J, Jiang B (2014) Chem Commun 50:13813–13816

    Article  Google Scholar 

  27. Budunoglu H, Yildirim A, Bayindir M (2012) J Mater Chem 22:9671–9677

    Article  Google Scholar 

  28. Brinker C, Scherer G (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, Boston

    Google Scholar 

  29. Bogush G, Zukoski I (1991) J Colloid Interface Sci 142:1–18

    Article  Google Scholar 

  30. Carcouët C, van de Put M, Mezari B, Magusin P, Laven J, Bomans P, Friedrich H, Esteves A, Sommerdijk N, van Benthem R, de With G (2014) Nano Lett 14:1433–1438

    Article  Google Scholar 

  31. Brinker C (1988) J Non-Cryst Solids 100:31–50

    Article  Google Scholar 

  32. Schwertfeger F, Glaubitt W, Schubert U (1992) J Non-Cryst Solids 145:85–89

    Article  Google Scholar 

  33. Xu Y, Fan W, Li Z, Wu D, Sun Y (2003) Appl Opt 42:108–112

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank Ms. S. L. Wang for performing TEM observations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wanguo Zheng or Bo Jiang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1283 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ye, L., Zhang, X., Zhang, Y. et al. Three-layer tri-wavelength broadband antireflective coatings built from refractive indices controlled silica thin films. J Sol-Gel Sci Technol 80, 1–9 (2016). https://doi.org/10.1007/s10971-016-4051-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4051-y

Keywords

Navigation