Skip to main content
Log in

Ultra-low-density GNS/CA composite aerogels with ultra-high specific surface for dye removal

  • Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ultra-low-density graphene nanosheet (GNS)/carbon composite aerogels (CAs) were prepared via GO (graphene oxide)/RF (resorcinol–formaldehyde) aerogel composite, supercritical fluid drying, and carbonization. Graphene oxide was found to act as an efficient anti-shrinkage additive in the carbonization process, making the linear shrinkage ratios decrease from 78 % to only 10 % (25 % GO content). The density of the aerogels thus decreases from 115 to 24.4 mg cm−3. 25 % GO-composited aerogel exhibits over two times modulus increase and over 11 times specific modulus increase in comparison with pure carbon aerogel. The microstructure results show that GO is fully cross-linked with RF polymers, makes the reaction more sufficient and ultimately strengthens the nanostructure to withstand the damage of carbonization. The resultant composite carbon aerogels exhibited super high specific surface area (as high as 2899 m2 g−1), good mechanical property, and high adsorption capacity of 403 mg g−1 for methylene blue.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Du A, Zhou B, Zhang Z, Shen J (2013) A special material or a new state of matter: a review and reconsideration of the aerogel. Materials 6(3):941–968

    Article  Google Scholar 

  2. Lu X, Arduini-Schuster M, Kuhn J, Nilsson O, Fricke J, Pekala R (1992) Thermal conductivity of monolithic organic aerogels. Science 255(5047):971–972

    Article  Google Scholar 

  3. Pröbstle H, Wiener M, Fricke J (2003) Carbon aerogels for electrochemical double layer capacitors. J Porous Mater 10(4):213–222

    Article  Google Scholar 

  4. Moreno-Castilla C, Maldonado-Hódar F (2005) Carbon aerogels for catalysis applications: an overview. Carbon 43(3):455–465

    Article  Google Scholar 

  5. Pekala R, Coronado P, Calef D (1994) Carbon aerogels for hydrogen storage. Lawrence Livermore National Lab, CA

    Google Scholar 

  6. Yang W, Wu D, Fu R (2008) Effect of surface chemistry on the adsorption of basic dyes on carbon aerogels. Colloids Surf A 312(2):118–124

    Article  Google Scholar 

  7. Wu X, Wu D, Fu R (2007) Studies on the adsorption of reactive brilliant red X-3B dye on organic and carbon aerogels. J Hazard Mater 147(3):1028–1036

    Article  Google Scholar 

  8. Pekala RW, Alviso CT (1992) Carbon aerogels and xerogels. Lawrence Livermore National Lab, CA

    Google Scholar 

  9. Al-Muhtaseb SA, Ritter JA (2003) Preparation and properties of resorcinol–formaldehyde organic and carbon gels. Adv Mater 15(2):101–114

    Article  Google Scholar 

  10. Mulik S, Sotiriou-Leventis C, Leventis N (2007) Time-efficient acid-catalyzed synthesis of resorcinol—formaldehyde aerogels. Chem Mater 19(25):6138–6144

    Article  Google Scholar 

  11. Hanzawa Y, Kaneko K, Yoshizawa N, Pekala R, Dresselhaus M (1998) The pore structure determination of carbon aerogels. Adsorption 4(3–4):187–195

    Article  Google Scholar 

  12. Feng J, Zhang C, Feng J, Jiang Y, Zhao N (2011) Carbon aerogel composites prepared by ambient drying and using oxidized polyacrylonitrile fibers as reinforcements. ACS Appl Mater Interfaces 3(12):4796–4803

    Article  Google Scholar 

  13. Fu R, Zheng B, Liu J, Weiss S, Ying JY, Dresselhaus MS, Dresselhaus G, Satcher JH, Baumann TF (2003) Fabrication of activated carbon fibers/carbon aerogels composites by gelation and supercritical drying in isopropanol. J Mater Res 18(12):2765–2773

    Article  Google Scholar 

  14. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19(14):2297–2302

    Article  Google Scholar 

  15. Podsiadlo P, Kaushik AK, Arruda EM, Waas AM, Shim BS, Xu J, Nandivada H, Pumplin BG, Lahann J, Ramamoorthy A (2007) Ultrastrong and stiff layered polymer nanocomposites. Science 318(5847):80–83

    Article  Google Scholar 

  16. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565

    Article  Google Scholar 

  17. Fukushima H, Drzal L Graphite nanoplatelets as reinforcements for polymers: structural and electrical properties. In: Proceedings of the 17th annual conference of the american society for composites, Purdue University, West Lafayette, IN, 2002

  18. Geim AK (2009) Graphene: status and prospects. Science 324(5934):1530–1534

    Article  Google Scholar 

  19. Park H, Seo J, Hwang S, Rhym Y-M, Baeck SH, Shim SE (2014) Influence of graphene nanoplatelets content on the structure and properties of macroporous carbon foams prepared by organic colloidal templates. J Mater Sci 49(5):2063–2069

    Article  Google Scholar 

  20. Guo K, Song H, Chen X, Du X, Zhong L (2014) Graphene oxide as an anti-shrinkage additive for resorcinol–formaldehyde composite aerogels. Phys Chem Chem Phys 16(23):11603–11608

    Article  Google Scholar 

  21. Guo K, Hu Z, Song H, Du X, Zhong L, Chen X (2015) Low-density graphene/carbon composite aerogels prepared at ambient pressure with high mechanical strength and low thermal conductivity. RSC Adv 5(7):5197–5204

    Article  Google Scholar 

  22. Hummers WS Jr, Offeman RE (1958) Preparation of graphitic oxide. J Am Chem Soc 80(6):1339

    Article  Google Scholar 

  23. Paredes J, Villar-Rodil S, Martinez-Alonso A, Tascon J (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564

    Article  Google Scholar 

  24. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM (2010) Improved synthesis of graphene oxide. ACS Nano 4(8):4806–4814

    Article  Google Scholar 

  25. Hontoria-Lucas C, Lopez-Peinado A, López-González JdD, Rojas-Cervantes M, Martin-Aranda R (1995) Study of oxygen-containing groups in a series of graphite oxides: physical and chemical characterization. Carbon 33(11):1585–1592

    Article  Google Scholar 

  26. Xu Y, Bai H, Lu G, Li C, Shi G (2008) Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J Am Chem Soc 130(18):5856–5857

    Article  Google Scholar 

  27. Xiao G-N, Man S-Q (2007) Surface-enhanced Raman scattering of methylene blue adsorbed on cap-shaped silver nanoparticles. Chem Phys Lett 447(4):305–309

    Article  Google Scholar 

  28. Zhang J, Cao Y, Feng J, Wu P (2012) Graphene-oxide-sheet-induced gelation of cellulose and promoted mechanical properties of composite aerogels. J Phys Chem C 116(14):8063–8068

    Article  Google Scholar 

  29. Lerf A, He H, Riedl T, Forster M, Klinowski J (1997) 13 C and 1 H MAS NMR studies of graphite oxide and its chemically modified derivatives. Solid State Ion 101:857–862

    Article  Google Scholar 

  30. Hwang S-W, Hyun S-H (2004) Capacitance control of carbon aerogel electrodes. J Non-Cryst Solids 347(1):238–245

    Article  Google Scholar 

  31. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43(8):1731–1742

    Article  Google Scholar 

  32. Zhu Y, Murali S, Cai W, Li X, Suk JW, Potts JR, Ruoff RS (2010) Graphene and graphene oxide: synthesis, properties, and applications. Adv Mater 22(35):3906–3924

    Article  Google Scholar 

  33. Hu H, Wang X, Wang J, Wan L, Liu F, Zheng H, Chen R, Xu C (2010) Preparation and properties of graphene nanosheets–polystyrene nanocomposites via in situ emulsion polymerization. Chem Phys Lett 484(4):247–253

    Article  Google Scholar 

  34. Zhou J, Song H, Ma L, Chen X (2011) Magnetite/graphene nanosheet composites: interfacial interaction and its impact on the durable high-rate performance in lithium-ion batteries. RSC Adv 1(5):782–791

    Article  Google Scholar 

  35. Pekala R, Schaefer D (1993) Structure of organic aerogels. 1. morphology and scaling. Macromolecules 26(20):5487–5493

    Article  Google Scholar 

  36. Brunauer S, Deming LS, Deming WE, Teller E (1940) On a theory of the van der Waals adsorption of gases. J Am Chem Soc 62(7):1723–1732

    Article  Google Scholar 

  37. Bi Y, Ren H, Chen B, Chen G, Mei Y, Zhang L (2012) Synthesis monolithic copper-based aerogel with polyacrylic acid as template. J Sol–Gel Sci Technol 63(1):140–145

    Article  Google Scholar 

  38. Gibson LJ, Ashby MF (1997) Cellular solids: structure and properties. Cambridge University Press, Cambridge

    Book  Google Scholar 

  39. Hayase G, Kanamori K, Fukuchi M, Kaji H, Nakanishi K (2013) Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew Chem Int Ed 52(7):1986–1989

    Article  Google Scholar 

  40. Guo Y, Yang S, Fu W, Qi J, Li R, Wang Z, Xu H (2003) Adsorption of malachite green on micro-and mesoporous rice husk-based active carbon. Dyes Pigm 56(3):219–229

    Article  Google Scholar 

  41. Namasivayam C, Kavitha D (2002) Removal of Congo Red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigm 54(1):47–58

    Article  Google Scholar 

  42. Malik PK (2003) Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36. Dyes Pigm 56(3):239–249

    Article  Google Scholar 

  43. Dubinin M, Stoeckli H (1980) Homogeneous and heterogeneous micropore structures in carbonaceous adsorbents. J Colloid Interface Sci 75(1):34–42

    Article  Google Scholar 

  44. Avom J, Mbadcam JK, Noubactep C, Germain P (1997) Adsorption of methylene blue from an aqueous solution on to activated carbons from palm-tree cobs. Carbon 35(3):365–369

    Article  Google Scholar 

  45. Cousins HJ, Gardner PJ, Matthews SJ (1992) Microcalorimetric studies of solution adsorption by activated carbons. Carbon 30(1):17–20

    Article  Google Scholar 

  46. Hang PT, Brindley G (1970) Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities (clay-organic studies XVIII). Clays Clay Miner 18(4):203–212

    Article  Google Scholar 

  47. Lin Y-R, Teng H (2002) Mesoporous carbons from waste tire char and their application in wastewater discoloration. Microporous Mesoporous Mater 54(1):167–174

    Article  Google Scholar 

  48. Yang N, Zhu S, Zhang D, Xu S (2008) Synthesis and properties of magnetic Fe 3 O 4-activated carbon nanocomposite particles for dye removal. Mater Lett 62(4):645–647

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51172163), National High Technology Research and Development Program of China (2013AA031801), and National Key Technology R&D Program of China (2013BAJ01B01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ai Du or Bin Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, W., Du, A., Zhou, B. et al. Ultra-low-density GNS/CA composite aerogels with ultra-high specific surface for dye removal. J Sol-Gel Sci Technol 80, 68–76 (2016). https://doi.org/10.1007/s10971-016-4047-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4047-7

Keywords

Navigation