Skip to main content
Log in

Speciation in diethanolamine-moderated TiO2 precursor sols and their use in film formation

  • Original Paper: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The phase behaviour of TiO2 films and powders produced from Ti(OiPr)4-based sols in ethanol modified with diethanolamine is investigated. The anatase/rutile phase concentrations vary with conditions and are correlated with samples from an acid-catalysed sol used in the same way to make films and powders. Diethanolamine is effective in increasing smoothness of films and reducing cracking, but also results in rutile formation when samples are heated at 600 °C. Mass spectrometry and nuclear magnetic spectroscopy were used to interrogate the species present in solution, where specific cluster types were found to be prominent and the diethanolamine was shown to coordinate with titanium via all three donor atoms.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ma Y, Wang X, Jia Y, Chen X, Han H, Li C (2014) Chem Rev 114:9987

    Article  Google Scholar 

  2. Bhachu DS, Sathasivam S, Sankar G, Scanlon DO, Cibin G, Carmalt CJ, Parkin IP, Watson GW, Bawaked SM, Obaid AY, Al-Thabaiti S, Basahel SN (2014) Adv Funct Mater 24:5075

    Article  Google Scholar 

  3. Doke SM, Yadav GD (2014) Chem Eng J 255:483

    Article  Google Scholar 

  4. Wu WQ, Xu YF, Rao H-S, Su CY, Kuang DB (2014) J Am Chem Soc 136:6437

    Article  Google Scholar 

  5. Kavan L, Tétreault N, Moehl T, Grätzel M (2014) J Phys Chem C 118:16408

    Article  Google Scholar 

  6. Lisenkov AD, Poznyak SK, Montemor MF, Carmezim MJ, Zheludkevich ML, Ferreira MGS (2014) J Electrochem Soc 161:D73

    Article  Google Scholar 

  7. Reddy MA, Kishore MS, Pralong V, Varadaraju U, Raveau B (2007) Electrochem Solid-State Lett 10:A29

    Article  Google Scholar 

  8. Yang Y, Kim D, Yang M, Schmuki P (2011) Chem Commun 47:7746

    Article  Google Scholar 

  9. Chimupala Y, Hyett G, Simpson R, Brydson R (2014) J Phys Conf Ser 522:012074

    Article  Google Scholar 

  10. Luttrell T, Halpegamage S, Sutter E, Batzill M (2014) Thin Solid Films 564:146

    Article  Google Scholar 

  11. Noori E, Mir N, Salavati-Niasari M, Gholami T, Masjedi-Arani M (2014) J Sol-Gel Sci Technol 69:544

    Article  Google Scholar 

  12. Colomer MT, Guzmán J, Moreno R (2010) J Am Ceram Soc 93:59–64

    Article  Google Scholar 

  13. Borlaf M, Colomer MT, Moreno R, Ortiz AL (2014) J Eur Ceram Soc 34:4457–4462

    Article  Google Scholar 

  14. Mills A, Graham A, O’Rourke C (2014) Sens Actuators B 190:907

    Article  Google Scholar 

  15. Kochkar H, Triki M, Jabou K, Berhault G, Ghorbel A (2007) J Sol-Gel Sci Technol 42:27

    Article  Google Scholar 

  16. Hu Y, Tsai HL, Huang CL (2003) Mater Sci Eng, A 344:209

    Article  Google Scholar 

  17. György E, Socol G, Axente E, Mihailescu IN, Ducu C, Ciuca S (2005) Appl Surf Sci 247:429

    Article  Google Scholar 

  18. San Vicente G, Morales A, Gutierrez MT (2001) Thin Solid Films 391:133

    Article  Google Scholar 

  19. Kim DJ, Hahn SH, Oh SH, Kim EJ (2002) Mater Lett 57:355

    Article  Google Scholar 

  20. Nishide T, Sato M, Hara H (2000) J Mater Sci 35:465

    Article  Google Scholar 

  21. Murugan K, Rao TN, Rao GVN, Gandhi AS, Murty BS (2011) J Mater Chem Phys 129:810

    Article  Google Scholar 

  22. Legrand-Buscema C, Malibert C, Bach S (2002) Thin Solid Films 418:79

    Article  Google Scholar 

  23. Verma A, Agnihotry SA (2007) Electrochim Acta 52:2701

    Article  Google Scholar 

  24. Takahashi Y, Matsuoka Y (1988) J Mater Sci 23:2259

    Article  Google Scholar 

  25. Hu J, Zhang C, Cui B, Bai K, Guan S, Wang L, Zhu S (2011) Appl Surf Sci 257:8772

    Article  Google Scholar 

  26. Yu J, Zhao X, Zhao Q (2000) J Mater Sci Lett 19:1015

    Article  Google Scholar 

  27. Godovac-Zimmermann J, Brown LR (2001) Mass Spectrom Rev 20:1

    Article  Google Scholar 

  28. Simonsen ME, Sogaard EG (2010) J Sol-Gel Sci Technol 53:485

    Article  Google Scholar 

  29. Simonsen ME, Sogaard EG (2013) Eur J Mass Spectrom 19:265

    Article  Google Scholar 

  30. Naklicki ML, Gorelsky SI, Kaim W, Sarkar B, Crutchley RJ (2012) Inorg Chem 51:1400

    Article  Google Scholar 

  31. Jung M, Oh H, Yang J, Shul Y (1999) Bull Korean Chem Soc 20:1394

    Google Scholar 

  32. Jung M (2001) Int J Inorg Mater 3:471

    Article  Google Scholar 

  33. Benfer S, Popp U, Richter H, Siewert C, Tomandl G (2001) Sep Purif Technol 22:231

    Article  Google Scholar 

  34. Larson AC, Von Dreele RB (2004) Los Alamos National Laboratory Report LAUR 86

  35. Inorganic Crystal Structure Database (ICSD, Fiz Karlsruhe) accessed via the National Chemical Database Service hosted by the Royal Society of Chemistry

  36. Von Dreele RB, Larson AC (2000) LANSCE MS-H805, Los Alamos National Laboratory, NM87545

  37. Horn M, Schwebdtfeger C, Meagher E (1972) Z Kristallogr 136:273

    Article  Google Scholar 

  38. Gonschorek W (1982) Z Kristallogr 160:187

    Article  Google Scholar 

  39. Ahn YU, Kim EJ, Kim HT, Hahn SH (2003) Mater Lett 57:4660

    Article  Google Scholar 

  40. Alzamani M, Shokuhfar A, Eghdam E, Mastali S (2013) Prog Nat Sci Mater Int 23:77

    Article  Google Scholar 

  41. Nadzirah S, Foo KL, Hashim U (2015) Int J Electrochem Sci 10:5498

    Google Scholar 

  42. Sayilkan F, Asilturk M, Sayilkan H, Onal Y, Akarsu M, Arpac E (2005) Turk J Chem 29:697

    Google Scholar 

  43. Avci N, Smet P, Poelman H, Velde N, Buysser K, Driessche I, Poelman D (2009) J Sol-Gel Sci Technol 52:424

    Article  Google Scholar 

  44. Nechache R, Nicklaus M, Diffalah N, Ruediger A, Rosei F (2014) Appl Surf Sci 313:48

    Article  Google Scholar 

  45. Yu JG, Yu HG, Cheng B, Zhao XJ, Yu JC, Ho WK (2003) J Phys Chem B 107:13871

    Article  Google Scholar 

  46. Amy AG, JillIian FB (1997) Am Mineral 82:717

    Article  Google Scholar 

  47. So WW, Park SB, Moon SJ (1998) J Mater Sci Lett 17:1219

    Article  Google Scholar 

  48. Brinker CJ, Scherer GW (1990) Sol–gel science: the physics and chemistry of sol–gel processing. Academic Press, London

    Google Scholar 

Download references

Acknowledgments

The authors thank the Saudi Arabian Ministry of Higher Education and King Faisal University in Al-Ahsa for a scholarship to support WSAA, EPSRC for funding the Smartlab diffractometer (EP/K00509X/1 and EP/K009877/1), Julie Herniman for collecting the mass spectral data and Alistair Clark for assistance with the SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew L. Hector.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 1742 kb)

Supplementary material 2 (XLSX 748 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Arjan, W.S., Hector, A.L. & Levason, W. Speciation in diethanolamine-moderated TiO2 precursor sols and their use in film formation. J Sol-Gel Sci Technol 79, 550–557 (2016). https://doi.org/10.1007/s10971-016-4032-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-4032-1

Keywords

Navigation