Skip to main content

Advertisement

Log in

Preparation of activated aluminum-coated basalt fiber mat for defluoridation from drinking water

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Alumina/basalt fiber mat composite (ABFMC) was fabricated by loading activated alumina (AA) on basalt fiber mat (BFM) via sol–gel method for fluoride removal. ABFMC and AA were characterized, and their performance for fluoride removal from aqueous solution was evaluated at different initial fluoride concentration and contact time. The loading capacity of AA on BFM increased with the increase in the sol viscosity, and the sol viscosity was optimized at 3.9 mPa s, whose corresponding loading percentage was 60.25 %. The results from the present study exhibit that ABFMC has shown good adsorption capacity for fluoride removal from aqueous solution. Experimental data revealed that the fluoride sorption on ABFMC was rapid, and 98.7 % fluoride removal was achieved within 30 min, whereas they were 96.8 % and 60 min in case of AA, respectively. The fluoride absorbed of ABFMC is well compared with that of most conventional materials and AA. The maximum of fluoride adsorbed on ABFMC was 1.872 mg/g. Adsorption isotherm analyses indicate that the adsorption of fluoride on ABFMC could be best described with the Langmuir isotherm, which suggested that the fluoride may create a monolayer layer on ABFMC. The adsorption kinetics was best described by the pseudo-second-order kinetic model followed by both intraparticle diffusion and film diffusion as the rate-controlling rate step.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Jin HE, Zhang FC, Han SB (2010) Geol China 37(3):621–626

    Google Scholar 

  2. Turner BD, Binning P, Stipp SLS (2005) Environ Sci Technol 39:9561–9568

    Article  Google Scholar 

  3. Hu K, Dickson JM (2006) J Membr Sci 279:529

    Article  Google Scholar 

  4. Rafique T, Naseem S, Ozsvath D, Hussain R, Bhanger MI, Usmani TH (2015) Sci Total Environ 530–531:21–278

    Google Scholar 

  5. Tripathy SS, Bersillon J-L, Gopal K (2006) Sep Purif Technol 50:310–317

    Article  Google Scholar 

  6. Camacho LM, Torres A, Saha D, Deng S (2010) J Colloid Interface Sci 349:307–313

    Article  Google Scholar 

  7. Rungrodnimitchai S, Kotatha D (2015) Chem Eng J 282:161–169

    Article  Google Scholar 

  8. Yu Y, Wang CH, Guo X, Paul Chen J (2015) J Colloid Interface Sci 441:113–120

    Article  Google Scholar 

  9. Zhang C, Chen L, Wang TJ, Su CL, Jin Y (2014) Appl Surf Sci 317:552–559

    Article  Google Scholar 

  10. Viswanathana N, Meenakshi S (2010) J Hazard Mater 178:226–232

    Article  Google Scholar 

  11. B A, Kumar E, Sillanpää M (2011) Chem Eng J 171:811–840

    Article  Google Scholar 

  12. Salifu A, Petrusevski B, Ghebremichael K, Modestus L, Buamah R, Aubry C, Amy GL (2013) Chem Eng J 228:63–74

    Article  Google Scholar 

  13. Kamble SP, Deshpande G, Barve PP, Rayalu S, Labhsetwar NK, Malyshew A, Kulkarni BD (2010) Desalination 264:15–23

    Article  Google Scholar 

  14. Lunge S, Thakre D, Kamble S, Labhsetwar N, Rayalu S (2012) J Hazard Mater 237–238:161–169

    Article  Google Scholar 

  15. Meng H, Hou W, Xu XX, Xu JL, Zhang X (2014) Particuology 14:38–43

    Article  Google Scholar 

  16. Barathi M, Santhana Krishna Kumar A, Rajesh N (2015) J Environ Chem Eng 3:630–641

    Article  Google Scholar 

  17. Ganvir V, Das K (2011) J Hazard Mater 185:1287–1294

    Article  Google Scholar 

  18. Cerny M, Glogar P, Sucharda Z, Chlup Z, Kotek J (2009) Compos Part A Appl S 40:1650–1659

    Article  Google Scholar 

  19. Fiore V, Di Bella G, Valenza A (2011) Mater Des 32:2091–2099

    Article  Google Scholar 

  20. Fiore V, Scalici T, Di Bella G, Valenza A (2015) Compos B 74:74–94

    Article  Google Scholar 

  21. Zhang HJ, Zhong ZL, Feng LL, Wang JG, Xue XT (2011) Adv Mater Res 175–176:469–473

    Article  Google Scholar 

  22. Dayananda D, Sarva VR, Prasad SV, Arunachalam J, Ghosh NN (2014) Chem Eng J 248:430–439

    Article  Google Scholar 

  23. Dayananda D, Sarva VR, Prasad SV, Arunachalam J, Parameswaran P, Ghosh NN (2015) Appl Surf Sci 329:1–10

    Article  Google Scholar 

  24. Agrafiotis C, Tsetsekou A (2002) J Eur Ceram Soc 22:423–434

    Article  Google Scholar 

  25. Langmuir I (1916) J Am Chem Soc 38:2221–2295

    Article  Google Scholar 

  26. Asgari G, Roshani B, Ghanizadeh G (2012) J Hazard Mater 217–218:123–132

    Article  Google Scholar 

  27. Hall KR, Eagleton LC, Acrivos A, Vermeulen TI (1996) Eng Chem Fund 5(2):212

    Article  Google Scholar 

  28. Ho YS, McKay G (2000) Water Res 34:735–742

    Article  Google Scholar 

  29. Ho YS (2006) J Hazard Mater 136:681–689

    Article  Google Scholar 

  30. Weber WJ Jr, Morris JC (1963) J Sanit Eng Div ASCE 89:31–59

    Google Scholar 

  31. Teng SX, Wang SG, Gong WX, Liu XW, Gao BY (2009) J Hazard Mater 168:1004–1011

    Article  Google Scholar 

  32. Sarkar M, Banerjee A, Pratim Pramanick P, Sarkar AR (2006) J Colloid Interface Sci 302:432–441

    Article  Google Scholar 

  33. Viswanathan N, Meenakshi S (2010) Appl Clay Sci 48:607–611

    Article  Google Scholar 

  34. Tor A, Danaoglu N, Arslan G, Cengeloglu Y (2009) J Hazard Mater 164:271–278

    Article  Google Scholar 

  35. Swain SK, Dey RK, Islam M, Patel RK, Jha U, Patnaik T, Airoldi C (2009) Sep Sci Technol 44:2096–2116

    Article  Google Scholar 

  36. Gopal V, Elango KP (2007) J Hazard Mater 14:198

    Google Scholar 

  37. Kamble SP, Jagtap S, Labhsetwar NK, Thakare D, Godfrey S, Devotta S, Rayalu SS (2007) Chem Eng J 129:173–180

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support by the Program for Changjiang Scholars and Innovative Research Team (PCSIRT) in University of Ministry of Education (IRT13084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoping Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Liang, X., Wang, J. et al. Preparation of activated aluminum-coated basalt fiber mat for defluoridation from drinking water. J Sol-Gel Sci Technol 78, 331–338 (2016). https://doi.org/10.1007/s10971-016-3970-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-3970-y

Keywords

Navigation