Skip to main content
Log in

Preparation and characterization of ceramic nanofibers based on lanthanum tantalates

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

This paper is focused on a modified sol–gel synthesis of polymeric complex and controlled assembly of inorganic nanofibers based on perovskite lanthanum tantalate La1/3TaO3 (LT) first time prepared by needleless electrospinning method. One advantage of the electrospinning method implementing PVA/LT polymer solution and subsequent thermal treatment provides a controlled patterning of the LT ceramic nanofibers. The structural properties and morphology of the composite PVA/LT were characterized by X-ray diffraction (XRD), differential scanning calorimetry/thermogravimetric analysis, Raman spectroscopy and scanning and transmission electron (SEM and TEM) microscopy. The surface microstructures of composite PVA/LT fibers were smooth, and their diameters were higher (about 100–200 nm) than those of the LT nanofibers. The mechanism of phase transformation from amorphous La4.67Ta22O62 at 400 °C via pyrochlore LaTa7O19 to perovskite La1/3TaO3 at 900 °C was determined. XRD analysis verified the formation of the major tetragonal La1/3TaO3 and minor orthorhombic LaTa7O19 phases at 1100 °C.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wu H, Pan W, Lin D, Li H (2012) Electrospinning of ceramic nanofibers: fabrication, assembly and applications. J Adv Ceram 1:2–23

    Article  Google Scholar 

  2. Sigmund W, Yuh J, Park H, Maneeratana V, Pyrgiotakis G, Daga A, Taylor J, Nino JC (2006) Processing and structure relationships in electrospinning of ceramic fiber systems. J Am Ceram Soc 89:395–407

    Article  Google Scholar 

  3. Naebe M, Lin T, Tian W, Dai L, Wang X (2007) Effects of MWNT nanofillers on structures and properties of PVA electrospun nanofibres. Nanotechnology 18(225605):1–8

    Google Scholar 

  4. Kim JH, Yoo SJ, Kwak DH, Jung HJ, Kim TY, Park KH, Lee JW (2014) Characterization and application of electrospun alumina nanofibers. Nanoscale Res Lett 9:1–4

    Article  Google Scholar 

  5. Wannapop S, Thongtem T, Thongtem S (2011) Characterization of SrWO4–PVA and SrWO4 spiders´webs synthesized by alectrospinning. Ceram Int 37:3499–3507

    Article  Google Scholar 

  6. Cao Y, Lin B, Sun Y, Yang H, Zhang X (2015) Structure, morphology and electrochemical properties of LaxSr1−xCo0.1Mn0.9O3−δ perovskite nanofibers prepared by electrospinning method. J Alloys Compd 624:31–39

    Article  Google Scholar 

  7. Cao Y, Lin B, Sun Y, Yang H, Zhang X (2015) Sr-doped lanthanum nickelate nanofibers for high energy density supercapacitors. Electrochim Acta 174:41–50

    Article  Google Scholar 

  8. Singh S, Singh V, Bhanu Prasad VV (2015) Single phase bead free PLZT (7/60/40) fibers processed by electrospinning method. Ceram Int 41:2418–2433

    Article  Google Scholar 

  9. Li S, He Z, Wang X, Gao K (2014) Fabrication of unique ribbon-like porous LaFeO3 nanofibers photocatalyst via electrospinning. Appl Phys A 117:1381–1386

    Article  Google Scholar 

  10. Huang K, Chu X, Feng W, Zhou C, Si W, Wu X, Yuan L, Feng S (2014) Catalytic behavior of electrospinning synthesized La0.75Sr0.25MnO3 nanofibers in the oxidation of CO and CH4. Chem Eng J 244:27–32

    Article  Google Scholar 

  11. Xu D, Luo L, Ding Y, Jiang L, Zhang Y, Ouyang X, Liu B (2014) A novel nonenzymatic fructose sensor based on electrospun LaMnO3 fibers. J Electroanal Chem 727:21–26

    Article  Google Scholar 

  12. Sun CY, Fung KZ (2002) Effect of Li addition on crystal structure and phase separation of highly defective (La, Li)TaO3 solid electrolytes. Solid State Commun 123:431–436

    Article  Google Scholar 

  13. Santos JP, Fernandez MJ, Fontecha JL, Matatagui D, Sayago I, Horrillo MC, Gracia I (2014) Nanocrystalline tin oxide nanofibers deposited by a novel focused electrospinning method. Application to the detection of TATP precursors. Sensors 14:24231–24243

    Article  Google Scholar 

  14. Starr JD, Budi MAK, Andrew JS (2015) Processing–property relationships in electrospun Janus-type biphasic ceramic nanofibers. J Am Ceram Soc 98:12–19

    Article  Google Scholar 

  15. Kennedy BJ, Howard CHJ, Kubota Y, Kato K (2004) Phase transition behavior in the A-site deficient perovskite oxide La1/3NbO3. J Solid State Chem 177:4552–4556

    Article  Google Scholar 

  16. Roudeau S, Weill F, Pechev S, Bassat JM, Grenier JC (2008) Electron microscopy and structural studies of Nd1/3NbO3. C R Chimie 11:734–740

    Article  Google Scholar 

  17. Rooksby HP, White EAD, Langston SA (1965) Perovskite-type rare-earth niobates and tantalates. J Am Ceram Soc 48:447–449

    Article  Google Scholar 

  18. Garcia-Martin S, Rojo JM, Tsukamoto H, Moran E, Alario-Franco MA (1999) Lithium-ion conductivity in the novel La1/3−xLi3x NbO3 solid solution with perovskite-related structure. Solid State Ion 116(1999):411–418

    Google Scholar 

  19. Hausgrud R, Norby T (2006) Proton conduction in rare-earth orthoniobates and orthotantalates. Nat Mater 5:193–206

    Article  Google Scholar 

  20. Cavalli E, Volkova E, Calestani G, Leonyuk N (2009) Structural and morphological characterization of flux grown YTa7O19, Nd:YTa7O19, Nd:LaTa7O19 and NdTa7O19 crystals. Mater Res Bull 44:1127–1131

    Article  Google Scholar 

  21. Kubota S, Yamane H, Shimada M, Takizawa H, Endo T (1998) Luminescence properties of rare earth ions in polytantalate. J Alloys Compd 275:746–749

    Article  Google Scholar 

  22. Cavalli E, Bovero E, Volkova EA, Ramponi R, Leonyuk NI (2006) Optical spectra of flux grown Nd3+:YTa7O19 and Nd3+:LaTa7O19 crystals. Opt Mater 28:1235–1237

    Article  Google Scholar 

  23. Jirsak O, Sanetrnik F, Lukas D, Kotek V, Martinova L, Chalupek J (2005) A method of nanofibers production from a polymer solution using electrostatic spinning and a device for carrying out the method. The Patent Cooperation Treaty WO 2005/024101

  24. Yalcinkaya B, Yener F, Cengiz-Callioglu F, Jirsak O (2012) Effect of concentration and salt additive on Taylor cone structure. Czech Republic, NanoCon

    Google Scholar 

  25. Yener F, Jirsak O (2012) Comparison between the needle and roller electrospinning of polyvinylbutyral. J Nanomater 2012:839317. doi:10.1155/2012/839317

  26. Petrik S, Maly M (2009) Production nozzle-less electrospinning nanofiber technology symposium WW—polymer nanofibers–fundamental studies and emerging applications. MRS Proc 2009:1240. doi:10.1557/PROC-1240-WW03-07

    Google Scholar 

  27. Irriharen A, Lopez-Marzo A, Lemmmetyimen H (2009) Absorption in polyvinyl alcohol-phosphoric acid films under different processing conditions. Kinetic study. Revista Quimica 21:3–9

    Google Scholar 

  28. Saat AM, Johan MR (2014) Effect of phosphoric acid concentration on the optical properties of partially phosphorylated PVA complexes. Int J Polymer Sci 2014:495875. doi:10.1155/2014/495875

  29. Brunckova H, Medvecky L, Durisin J, Girman V (2014) Phase transformation and particle morphology of perovskite La1/3TaO3 precursors prepared by polymeric tartrate complex sol–gel method. Mat Lett 115:184–186

    Article  Google Scholar 

  30. Brunckova H, Medvecky L, Durisin J, Hvizdos P, Girman V (2014) Structural properties and phase transformation of sol–gel prepared lanthanum tantalates. J Mater Sci 49:8423–8427

    Article  Google Scholar 

  31. Gilman Jeffrey W, David L, Hart V, Kashiwagi T (1994) Thermal decomposition chemistry of poly(vinyl-alcohol) characterization and reactions with bismaleimide, in: fire and polymers II: Materials and Test for Hazard Prevention, American Chemical Society, ACS symposium series 599, August 21–26, 1994, Washington

  32. Keereeta Y, Thongtem T, Thongtem S (2015) Synthesis of lanthanum tungstate interconnecting nanoparticles by high voltage electrospinning. Appl Surf Sci 351:1075–1080

    Article  Google Scholar 

  33. Bornert C, Carrilo-Cabrera W, Simon P, Langbein H (2010) V2.38Nb10.7O32.7: a V2O5–Nb2O5 mixed oxide tunnel structure related to the tetragonal tungsten bronzes. J Solid State Chem 183(2010):1038–1045

    Article  Google Scholar 

  34. Yamamoto A, Uchiyama H, Tajima S (2004) Metallization of La1/3NbO3 by lithium incorporation. Mater Res Bull 39:1691–1699

    Article  Google Scholar 

  35. Laguna MA, Sanjuan ML (2002) Antiferroelectric instability in double perovskite systems La(2−x)/3LixTiO3, La(1−x)/3LixTaO3 and La(1−x)/3LixNbO3. Ferroelectrics 272:63–68

    Article  Google Scholar 

  36. Noked O, Melchior A, Shuker R, Livneh T, Steininger R, Kennedy BJ, Sterer E (2013) Pressure-induced amorphization of La1/3TaO3. J Solid State Chem 202:38–42

    Article  Google Scholar 

  37. Zielinska B, Mijowska E, Kalenzuk RJ (2012) Synthesis, characterization and photocatalytic properties of lithium tantalate. Mater Charact 68:71–76

    Article  Google Scholar 

  38. Brunckova H, Medvecky L, Hvizdos P, Girman V (2014) Effect of solvent on phase composition and particle morphology of lanthanum niobates prepared by polymeric complex sol–gel method. J Sol-Gel Sci Technol 69:272–280

    Article  Google Scholar 

  39. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714

    Article  Google Scholar 

  40. Kong J, Tan HR, Tan SY, Li F, Wong SY, Li X, Lu X (2010) A generic approach for preparing core–shell carbon–metal oxide nanofibers: morphological evolution and its mechanism. Chem Commun 46:8773–8775

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Operational Program “Research and Development” financed through European Regional Development Fund through project “Research Centre of Advanced Materials and Technologies for Recent and Future Applications” “PROMATECH” ITMS:26220220186 and the Grant Agency of the Slovak Academy of Sciences through project VEGA No. 2/0041/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Helena Brunckova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mudra, E., Brunckova, H., Streckova, M. et al. Preparation and characterization of ceramic nanofibers based on lanthanum tantalates. J Sol-Gel Sci Technol 78, 322–330 (2016). https://doi.org/10.1007/s10971-016-3969-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-016-3969-4

Keywords

Navigation