Skip to main content
Log in

Optical properties of nanostructured Cd10−x Cu x ZnO composite films by sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The Cd10−x Cu x ZnO films were prepared for various x = 0.25, 0.50, 0.75 and 1.0 by sol–gel method. The structural and surface morphology of the films was investigated by XRD and atomic force microscopy. The results indicate that the crystallinity of the films is improved with Cu doping. The maximum crystallite size was 23 nm and minimum dislocation density 1.890 × 1013 lines/m2. The study of optical properties revealed that optical band gap firstly decreases with doping and then increase with further increase in doping. The obtained results indicate that the structural and optical properties of Cd10−x Cu x ZnO composite films are controlled with Cd/Cu ratio.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Wang ZL, Kong XY, Ding Y, Gao P, Hughes WL, Yang R, Zhang Y (2004) Adv Funct Mater 14(10):943

    Article  Google Scholar 

  2. Li YZ, Li XM, Gaoa XD (2011) J Alloys Compd 509(26):7193

    Article  Google Scholar 

  3. Phan DT, Chung GS (2011) Appl Surf Sci 257(9):4339

    Article  Google Scholar 

  4. Hembram K, Sivaprahasam D, Rao TN (2011) J Eur Ceram Soc 31(10):1905

    Article  Google Scholar 

  5. Liu K, Sakurai M, Aono M (2011) Sensors Actuators B Chem 157(1):98

    Article  Google Scholar 

  6. Lee CT, Chiu YS, Ho SC, Lee YJ (2011) Sensors 11(5):4648

    Article  Google Scholar 

  7. Xu CX, Sun XW (2003) Appl Phys Lett 83(18):3806

    Article  Google Scholar 

  8. Kim JH, Hong YC, Uhm HS (2007) Chem Phys Lett 443:122

    Article  Google Scholar 

  9. Wang WW, Zhu YJ (2004) Inorg Chem Commun 7:1003

    Article  Google Scholar 

  10. Mahmoud WE, Al-Ghamdi AA (2010) Opt Laser Technol 42:1134–1138

    Article  Google Scholar 

  11. Freeman AJ, Poeppelmeier KR, Mason TO, Chang RPH, Marks TJ (2000) Mater Res Soc Bull 25:45

    Article  Google Scholar 

  12. Yan M, Lane M, Kannewurf CR, Chang RPH (2001) Appl Phys Lett 78:2342

    Article  Google Scholar 

  13. Ghosh PK, Maity R, Chattopadhyay KK (2004) Sol Energy Mater Sol Cells 81:279

    Article  Google Scholar 

  14. Gupta RK, Yakuphanoglu F, Amanullah FM (2011) Phys E 43:1666

    Article  Google Scholar 

  15. Yahia IS, Salem GF, Yakuphanoglu F (2013) Superlattices Microstruct 64:178–184

    Article  Google Scholar 

  16. Chung SM, Shin JH, Lee JM, Ryu MK, Cheong WS, Park SH, Hwang CS, Cho KI (2011) J Nanosci Nanotechnol 11(1):782–786

    Article  Google Scholar 

  17. Gong H, Hu JQ, Wang JH, Ong CH, Zhu FR (2006) Sensors Actuators B Chem 115(1):247–251

    Article  Google Scholar 

  18. Sung NE, Kang SW, Shin HJ, Lee HK, Lee IJ (2013) Thin Solid Films 547:285–288

    Article  Google Scholar 

  19. Mani GK, Rayappan JBB (2014) J Alloys Compd 582:414–419

    Article  Google Scholar 

  20. Wang DY, Zhou J, Liu GZ (2009) J Alloys Compd 487:545–549

    Article  Google Scholar 

  21. Koao LF, Dejene BF, Swart HC (2014) Phys B 439:173–176

    Article  Google Scholar 

  22. Xia CH, Wang F, Hu CL (2014) J Alloys Compd 589:604–608

    Article  Google Scholar 

  23. Lin HT, Chin TS, Shih JC, Lin SH, Hong TM (2004) Appl Phys Lett 85:621

    Article  Google Scholar 

  24. Gupta RK, Serbetçi Z, Yakuphanoglu F (2012) J Alloys Compd 515:96–100

    Article  Google Scholar 

  25. JCPDS—International Centre for Diffraction Data, Card No. 05-0640 (1997)

  26. Barret CS, Massalski TB (1980) Structure of metals. Pergamon Press, Oxford

    Google Scholar 

  27. Dakhel AA (2014) Solid State Sci 31:1–7

    Article  Google Scholar 

  28. Elttayef Abdul-Hussein K, Ajeel Hayder M, Khudiar Ausama I (2013) J Mater Res Technol 2:182–187

    Article  Google Scholar 

  29. Yakuphanoglu F (2012) Sensors Actuators A 173:141–144

    Article  Google Scholar 

  30. Alahmed ZA, Yakuphanoglu F (2013) Microelectron Eng 110:25–28

    Article  Google Scholar 

  31. Green M, Hussain Z (1991) J Appl Phys 69:7788

    Article  Google Scholar 

  32. Satoh N, Nakashima T, Kamikura K, Yamamoto K (2008) Nat Nanotechnol 3:106

    Article  Google Scholar 

  33. Dakhel AA (2012) J Alloys Compd 539:26–31

    Article  Google Scholar 

Download references

Acknowledgments

This paper was funded by the Deanship of Scientific Research (DSR), King Abdulaziz University, Jeddah, under Grant No. (619-130-D1435). The authors, therefore, acknowledge with thanks DSR technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Al Orainy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al Orainy, R.H. Optical properties of nanostructured Cd10−x Cu x ZnO composite films by sol–gel method. J Sol-Gel Sci Technol 77, 371–377 (2016). https://doi.org/10.1007/s10971-015-3863-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3863-5

Keywords

Navigation