Skip to main content
Log in

Bio-inspired highly hydrophobic surface with ecdysis behavior using an organic monolithic resin and titanium dioxide photocatalyst

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In order to develop a durable highly hydrophobic surface, a biomimetic design was developed by combining an organic monolithic resin, TiO2 photocatalyst, and polytetrafluoroethylene particles. An accelerated weathering resistance examination revealed that the highly hydrophobic surface maintained a water contact angle exceeding 140° for 6 years. Moreover, high antiwear performance was confirmed by a rubbing test. Since the organic monolithic resin had co-continual structures with interconnected pores, new surface with a microstructure appeared continually by removal of the damaged surface. On the other hand, decomposition of organic compounds by TiO2 photocatalyst enabled self-etching of the damaged top layer of the organic monolithic resin. The flowing water due to rainfall or physical scraping contributed to the removal of the damaged surface. However, the film thickness after surface restoration was approximately constant. In addition, dynamic hydrophobicity could be improved when interconnected pores of the organic monolithic resins were impregnated with perfluorocarbon liquid. Thus, we have addressed essential issues and proposed a new method for designing hydrophobic surfaces with high durability.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zisman WA (1963) Ind Eng Chem 55:18–38

    Article  Google Scholar 

  2. Baier RE, Meyer PE (1986) ChemTech 16:178–185

    Google Scholar 

  3. Nostro PL (1995) Adv Colloid Interface Sci 56:245–287

    Article  Google Scholar 

  4. Yamauchi G, Takai K, Saito H (2000) IEICE Trans Electron E83-C:1139–1141

    Google Scholar 

  5. Cassie ABD, Baxter S (1944) Trans Faraday Soc 40:546–551

    Article  Google Scholar 

  6. Wenzel RN (1949) J Phys Colloid Chem 53:1466–1467

    Article  Google Scholar 

  7. Miwa M, Fujishima A, Nakajima A, Hashimoto K, Watanabe T (2000) Langmuir 16:5754–5760

    Article  Google Scholar 

  8. Onda T, Yamamoto T, Satoh N, Tsuji K (1996) Langmuir 12:2125–2127

    Article  Google Scholar 

  9. Nakajima A (2011) NPG Asia Mater 3:49–56

    Article  Google Scholar 

  10. Rothstein JP (2010) Ann Rev Fluid Mech 42:89–109

    Article  Google Scholar 

  11. Mognetti BM, Kusumaatmaja H, Yeomans JM (2010) Faraday Discuss 146:153–165

    Article  Google Scholar 

  12. Rio E, Daerr A, Andreotti B, Limat L (2005) Phys Rev Lett 94:024503

    Article  Google Scholar 

  13. Richard D, Quéré D (1999) Europhys Lett 48:286–291

    Article  Google Scholar 

  14. Kim HY, Lee HJ, Kang BH (2002) J Colloid Interface Sci 247:372–380

    Article  Google Scholar 

  15. Suzuki S, Nakajima A, Sakai M, Sakurada Y, Yoshida N, Hashimoto A, Kameshima Y, Okada K (2008) Chem Lett 37:58–59

    Article  Google Scholar 

  16. Quéré D (2005) Rep Prog Phys 68:2495–2532

    Article  Google Scholar 

  17. Gogte S, Vorobieff P, Truesdell R, Mammoli A, van Swol F, Shah P, Brinker C (2005) J Phys Fluids 17:51701

    Article  Google Scholar 

  18. Sakai M, Song JH, Yoshida N, Suzuki S, Kameshima Y, Nakajima A (2006) Langmuir 22:4906–4909

    Article  Google Scholar 

  19. Sakai M, Hashimoto A, Yoshida N, Suzuki S, Kameshima Y, Nakajima A (2007) Rev Sci Instrum 78:045103

    Article  Google Scholar 

  20. Wong TS, Kang SH, Tang SKY, Smythe EJ, Hatton BD, Grinthal A, Aizenberg J (2011) Nature 477:443–447

    Article  Google Scholar 

  21. Smith JD, Dhiman R, Anand S, Reza-Garduno E, Cohen RE, McKinley GH, Varanasi KK (2013) Soft Matter 9:1772–1780

    Article  Google Scholar 

  22. Tsuruki Y, Sakai M, Isobe T, Matsushita S, Nakajima A (2014) J Mater Res 29(14):1546–1555

    Article  Google Scholar 

  23. Nakajima A, Hashimoto K, Watanabe T, Takai K, Yamauchi G, Fujishima A (2000) Langmuir 16(17):7044–7047

    Article  Google Scholar 

  24. Yanagisawa T, Nakajima A, Kameshima Y, Sakai M, Okada K (2009) Mater Sci Eng, B 161:36–39

    Article  Google Scholar 

  25. Wang J, Zheng Y, Nie F, Zhai J, Jiang L (2009) Langmuir 25(24):14129–14134

    Article  Google Scholar 

  26. Aoki H, Hosoya K, Norisuye T, Tanaka N, Tokuda D, Ishizuka N, Nakanishi K (2006) J Poly Sci A Poly Chem 44:949–958

    Article  Google Scholar 

  27. Aoki H, Kubo T, Ikegami T, Tanaka N, Hosoya K, Tokuda D, Ishizuka N (2006) J Chromatogr A 1119:66–79

    Article  Google Scholar 

  28. Hayase G, Kanamori K, Fukuchi M, Kaji H, Nakanishi K (2003) Angew Chem Int Ed 52(7):1986–1989

    Article  Google Scholar 

  29. Yoneda S, Han W, Hasegawa U, Uyama H (2014) Polymer 55(15):3212–3216

    Article  Google Scholar 

  30. Fujishima A, Zhang X, Tryk DA (2008) Surf Sci Rep 63(12):515–582

    Article  Google Scholar 

  31. Lu Y, Sathasivam S, Song J, Crick CR, Carmalt CJ, Parkin IP (2015) Science 347(6226):1132–1135

    Article  Google Scholar 

Download references

Acknowledgments

The present study was supported in part by the Project to Create Photocatalyst Industry for Recycling-oriented Society of the New Energy and Industrial Technology Development Organization (NEDO) and by JSPS KAKENHI through a Grant-in-Aid for Exploratory Research (Grant Number 23656066). Technical support by Ms. Mio Hayashi, Ms. Hiroko Takei and Taihokohzai Co., Ltd. is gratefully appreciated.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Munetoshi Sakai or Akira Nakajima.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1687 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sakai, M., Kato, T., Ishizuka, N. et al. Bio-inspired highly hydrophobic surface with ecdysis behavior using an organic monolithic resin and titanium dioxide photocatalyst. J Sol-Gel Sci Technol 77, 257–265 (2016). https://doi.org/10.1007/s10971-015-3851-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3851-9

Keywords

Navigation