Skip to main content
Log in

Structural, optical, photocatalytic, and antimicrobial activities of cobalt-doped tin oxide nanoparticles

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, pure and Co-doped tin oxide (SnO2) nanoparticles were synthesized by sol–gel method, and the effect of Co-doping on the structural, optical, photocatalytic, and antimicrobial activities was studied. The prepared samples were characterized by X-ray diffraction (XRD), high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, UV–visible diffuse reflectance spectroscopy, and N2 adsorption/desorption analysis. The XRD patterns of all the samples are identified as tetragonal rutile-type SnO2 phase which is further confirmed by TEM analysis. The optical spectra showed redshift in the absorption edge of doped samples, which enhances their absorption toward the visible light region. The photocatalytic activity of all the samples was assessed by monitoring the degradation of methylene blue solution under daylight illumination, and it was found that the photocatalytic activity significantly increases with the increase in dopant concentration, which is due to the effective charge separation of photogenerated electron–hole pairs. The antimicrobial studies investigated against standard bacterial and fungal strains showed enhanced antimicrobial activity in doped samples, which can be attributed to the production of reactive oxygen species and large surface area of the nanoparticles.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Tischner A, Maier T, Stepper C, Kock A (2008) Ultrathin SnO2 gas sensors fabricated by spray pyrolysis for the detection of humidity and carbon monoxide. Sens Actuators B Chem 134(2):796–802

    Article  Google Scholar 

  2. Mohamed SH (2012) SnO2 dendrites-nanowires for optoelectronic and gas sensing applications. J Alloy Compd 510(1):119–124

    Article  Google Scholar 

  3. Ko YD, Kang JG, Park JG, Lee S, Kim DW (2009) Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries. Nanotechnology 20:455701

    Article  Google Scholar 

  4. Casados DS, Santiago EV, Lopez SH, Lopez MAC (2009) Characterization and photocatalytic performance of tin oxide. Ind Eng Chem Res 48(3):1249–1252

    Article  Google Scholar 

  5. Singh AK, Nakate UT (2013) Microwave synthesis, characterization and photocatalytic properties of SnO2 nanoparticles. Adv Nanoparticles 2:66–70

    Article  Google Scholar 

  6. Duong TT, Choi HJ, He QJ, Le AT, Yoon SG (2013) Enhancing the efficiency of dye sensitized solar cells with an SnO2 blocking layer grown by nanocluster deposition. J Alloy Compd 561:206–210

    Article  Google Scholar 

  7. Etre AYE, Reda SM (2010) Characterisation of nanocrystalline SnO2 thin film fabricated by electrodeposition method for dye-sensitized solar cell application. Appl Surf Sci 256:6601–6606

    Article  Google Scholar 

  8. Entradas T, Cabrita JF, Dalui S, Nunes MR, Monteiro OC, Silvestre AJ (2014) Synthesis of sub-5 nm Co-doped SnO2 nanoparticles and their structural, microstructural, optical and photocatalytic properties. Mater Chem Phys 147(3):563–571

    Article  Google Scholar 

  9. Rashad MM, Ismail AA, Osama I, Ibrahim IA, Kandil AHT (2014) Decomposition of methylene blue on transition metals doped SnO2 nanoparticles. CLEAN Soil Air Water 42(5):657–663

    Article  Google Scholar 

  10. Rekha K, Nirmala M, Nair MG, Anukaliani A (2010) Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Phys B Condens Matter 405(15):3180–3185

    Article  Google Scholar 

  11. Yu B, Leung KM, Guo Q, Lau WM, Yang J (2011) Synthesis of Ag–TiO2 composite nano thin film for antimicrobial application. Nanotechnology 22(11):115603

    Article  Google Scholar 

  12. Nair MG, Nirmala M, Rekha K, Anukaliani A (2011) Structural, optical, photo catalytic and antibacterial activity of ZnO and Co doped ZnO nanoparticles. Mater Lett 65(12):1797–1800

    Article  Google Scholar 

  13. Gupta K, Singh RP, Pandey A, Pandey A (2013) Photocatalytic antibacterial performance of TiO2 and Ag-doped TiO2 against S. aureus, P. aeruginosa and E. coli. Beilst J Nanotechnol 4:345–351

    Article  Google Scholar 

  14. Shah AH, Manikandan E, Ahmed MB, Ganesan V (2013) Enhanced bioactivity of Ag/ZnO nanorods-A comparative antibacterial study. J Nanomed Nanotechnol 4(3):1–6

    Google Scholar 

  15. Zhang J, Gao L (2004) Synthesis and characterization of nanocrystalline tin oxide by sol–gel method. J Solid State Chem 177(4–5):1425–1430

    Article  Google Scholar 

  16. Adnan R, Razana NA, Rahman IA, Farrukh MA (2010) Synthesis and characterization of high surface area tin oxide nanoparticles via the sol–gel method as a catalyst for the hydrogenation of styrene. J Chin Chem Soc 57(2):222–229

    Article  Google Scholar 

  17. Fan C, Song X, Yin Z, Yu H, Sun S (2006) Preparation of SnO2 hollow nanospheres by a solvothermal method. J Mater Sci 41:5696–5698

    Article  Google Scholar 

  18. Niasari MS, Mir N, Davar F (2010) Synthesis, characterization and optical properties of tin oxide nanoclusters prepared from a novel precursor via thermal decomposition route. Inorganica Chimi Acta 363(8):1719–1726

    Article  Google Scholar 

  19. Patil GE, Kajale DD, Gaikwad VB, Jain GH (2012) Preparation and characterization of SnO2 nanoparticles by hydrothermal route. Intern Nano Lett 2:1–5

    Article  Google Scholar 

  20. Cullity BD (1978) Elements of X-ray diffraction, 2nd edn. Addison-Wesely, Massachusetts

    Google Scholar 

  21. Azam A, Ahmed AS, Chaman M, Naqvi AH (2010) Investigation of electrical properties of Mn doped tin oxide nanoparticles using impedance spectroscopy. J Appl Phys 108:094329

    Article  Google Scholar 

  22. Ahmed AS, Muhamed SM, Singla ML, Tabassum S, Naqvi AH, Azam A (2011) Band gap narrowing and fluorescence properties of nickel doped SnO2 nanoparticles. J Lumin 131(1):1–6

    Article  Google Scholar 

  23. Pillai SK, Sikhwivhilu LM, Hillie TK (2010) Synthesis, characterization and photoluminescence properties of Dy3+-doped nano-crystalline SnO2. Mater Chem Phys 120(2–3):619–624

    Article  Google Scholar 

  24. Karthik K, Pandian SK, Jaya NV (2010) Effect of nickel doping on structural, optical and electrical properties of TiO2 nanoparticles by sol–gel method. Appl Surf Sci 256(22):6829–6833

    Article  Google Scholar 

  25. Krishnakumar T, Jayaprakash R, Pinna N, Phani AR, Passacantando M, Santucci S (2009) Structural, optical and electrical characterization of antimony-substituted tin oxide nanoparticles. J Phys Chem Solids 70(6):993–999

    Article  Google Scholar 

  26. Morales AE, Mora ES, Pal U (2007) Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev Mex De Fis 53(5):18–22

    Google Scholar 

  27. Choudhury B, Choudhury A (2012) Luminescence characteristics of cobalt doped TiO2 nanoparticles. J Lumin 132(1):178–184

    Article  Google Scholar 

  28. Lima MK, Fernandes DM, Silva MF, Baesso ML, Neto AM, Morais GR, Nakamura CV, Caleare AO, Hechenleitner AAW, Pineda EAG (2014) Co-doped ZnO nanoparticles synthesized by an adapted sol–gel method: effects on the structural, optical, photocatalytic and antibacterial properties. J Sol-Gel Sci Technol 72:301–309

    Article  Google Scholar 

  29. Kim DH, Hong HS, Kim SJ, Song JS, Lee KS (2004) Photocatalytic behaviours and structural characterization of nanocrystalline Fe-doped TiO2 synthesized by mechanical alloying. J Alloy Compd 375(1–2):259–264

    Article  Google Scholar 

  30. Fang LM, Zu XT, Li ZJ, Zhu S, Liu CM, Zhou WL, Wang LM (2008) Synthesis and characteristics of Fe3+-doped SnO2 nanoparticles via sol–gel-calcination or sol–gel-hydrothermal route. J Alloy Compd 454(1–2):261–267

    Article  Google Scholar 

  31. Santara B, Pal B, Giri PK (2011) Signature of strong ferromagnetism and optical properties of Co doped TiO2 nanoparticles. J App Phys 110:114322

    Article  Google Scholar 

  32. He R, Hocking RK, Tsuzuki T (2012) Co-doped ZnO nanopowders: location of cobalt and reduction in photocatalytic activity. Mater Chem Phys 132(2–3):1035–1040

    Article  Google Scholar 

  33. Djaja NF, Montja DA, Saleh R (2013) The effect of Co incorporation into ZnO nanoparticles. Adv Mater Phys Chem 3:33–41

    Article  Google Scholar 

  34. Choudhury B, Dey M, Choudhury A (2013) Defect generation, d–d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int Nano Lett 3(1):1–8

    Article  Google Scholar 

  35. Rossmeisl J, Qu ZW, Zhu H, Kroes GJ, Norskov JK (2007) Electrolysis of water on oxide surfaces. J Electroanal Chem 607:83–89

    Article  Google Scholar 

  36. Man IC, Su HY, Vallejo FC, Hansen HA, Martinez JI, Inoglu NG, Kitchin J, Jaramillo TF, Norskov JK, Rossmeisl J (2011) Universality in oxygen evolution electrocatalysis on oxide surfaces. Chem Cat Chem 3:1159–1165

    Google Scholar 

  37. Petrykin V, Macounova K, Okube M, Mukerjee S, Krtil P (2013) Local structure of Co doped RuO2 nanocrystalline electrocatalytic materials for chlorine and oxygen evolution. Catal Today 202:63–69

    Article  Google Scholar 

  38. Wang QQ, Lin BZ, Xu BH, Li XL, Chen ZJ, Pian XT (2010) Preparation and photocatalytic properties of mesoporous SnO2-hexaniobate layered nanocomposite. Microporous Mesoporous Mater 130(1–3):344–351

    Article  Google Scholar 

  39. Foletto EL, Battiston S, Collazzo GC, Bassaco MM, Mazutti MA (2012) Degradation of leather dye using CeO2–SnO2 nanocomposite as photocatalyst under sunlight. Water Air Soil Pollut 223:5773–5779

    Article  Google Scholar 

  40. Behnajady MA, Tohidi Y (2014) Synthesis, characterization and photocatalytic activity of Mg-impregnated ZnO–SnO2 coupled nanoparticles. Photochem Photobiol 90(1):51–56

    Article  Google Scholar 

  41. Stengl V, Bakardjieva S, Murafa N (2009) Preparation and photocatalytic activity of rare earth doped TiO2 nanoparticles. Mater Chem Phys 114:217–226

    Article  Google Scholar 

  42. Kuzhalosai V, Subash B, Senthilraja A, Dhatshanamurthi P, Shanthi M (2013) Synthesis, characterization and photocatalytic properties of SnO2–ZnO composite under UV-A light. Spectrochim Acta A Mol Biomol Spectrosc 115:876–882

    Article  Google Scholar 

  43. Bandekar G, Rajurkar NS, Mulla IS, Mulik UP, Amalnerkar DP, Adhyapak PV (2014) Synthesis, characterization and photocatalytic activity of PVP stabilized ZnO and modified ZnO nanostructures. Appl Nanosci 4:199–208

    Article  Google Scholar 

  44. Haldorai Y, Shim JJ (2014) Novel chitosan-TiO2 nanohybrid: preparation, characterization, antibacterial, and photocatalytic properties. Poly Compos 35(2):327–333

    Article  Google Scholar 

  45. Sawai J, Shoji S, Igarashi H, Hashimoto A, Kokugan T, Shimizu M, Kojima H (1998) Hydrogen peroxide as an antibacterial factor in zinc oxide powder slurry. J Ferment Bioeng 86(5):521–522

    Article  Google Scholar 

  46. Talebian N, Amininezhad SM, Doudi M (2013) Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. J Photochem Photobiol B Biol 120:66–73

    Article  Google Scholar 

  47. Stankovic A, Dimitrijevic S, Uskokovic D (2013) Influence of size scale and morphology on antibacterial properties of ZnO powders hydrothemally synthesized using different surface stabilizing agents. Colloids Surf B Biointerfaces 102:21–28

    Article  Google Scholar 

  48. Li Y, Zhang W, Niu J, Chen Y (2012) Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano 6(6):5164–5173

    Article  Google Scholar 

  49. Suyana P, Kumar SN, Kumar BSD, Nair BN, Pillai SC, Mohamed AP, Warrier KGK, Hareesh US (2014) Antifungal properties of nanosized ZnS particles synthesised by sonochemical precipitation. RSC Adv 4(17):8439–8445

    Article  Google Scholar 

  50. Padmavathy N, Vijayaraghavan R (2008) Enhanced bioactivity of ZnO nanoparticles-an antimicrobial study. Sci Technol Adv Mater 9:1–7

    Article  Google Scholar 

  51. Jalal R, Goharshadi EK, Abareshi M, Moosavi M, Yousefi A, Nancarrow P (2010) ZnO nanofluids: green synthesis, characterization, and antibacterial activity. Mater Chem Phys 121:198–201

    Article  Google Scholar 

  52. Stoimenov PK, Klinger RL, Marchin GL, Klabunde KJ (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18(17):6679–6686

    Article  Google Scholar 

  53. Xie Y, He Y, Irwin PL, Jin T, Shi X (2011) Antibacterial activity and mechanism of action of zinc oxide nanoparticles against campylobacter jejuni. Appl Environ Microbiol 77(7):2325–2331

    Article  Google Scholar 

  54. Lipovsky A, Tzitrinovich Z, Friedmann H, Applerot G, Gedanken A, Lubart R (2009) EPR study of visible light-induced ROS generation by nanoparticles of ZnO. J Phys Chem C 113(36):15997–16001

    Article  Google Scholar 

  55. Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279(1):71–76

    Article  Google Scholar 

  56. Talebian N, Zavvare HSH (2014) Enhanced bactericidal action of SnO2 nanostructures having different morphologies under visible light: influence of surfactant. J Photochem Photobiol B Biol 130:132–139

    Article  Google Scholar 

Download references

Acknowledgments

One of the authors Dhanya Chandran acknowledges University of Kerala for financial assistance in the form of Junior Research Fellowship. The authors would like to thank STIC, CUSAT, Cochin; IIT Mumbai; NIIST, Thiruvananthapuram, for providing the characterization techniques.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Balachandran.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandran, D., Nair, L.S., Balachandran, S. et al. Structural, optical, photocatalytic, and antimicrobial activities of cobalt-doped tin oxide nanoparticles. J Sol-Gel Sci Technol 76, 582–591 (2015). https://doi.org/10.1007/s10971-015-3808-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3808-z

Keywords

Navigation