Skip to main content
Log in

Photoluminescence analysis for terbium β-diketonate complex-based silica xerogel matrices

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this work, luminescent complex, terbium (III) β-diketonate (C24H16F9O8S3Tb), was prepared and incorporated into silica matrix by ordinary sol–gel method. The starting precursor which provide silica matrices was tetraethyl orthosilicate (SiOC2H5)4. The experimental conditions have been adopted, so that the sample formation via sol–gel route was started at neutral pH, whereas the final pH value was normalized to three before reaching gel point. The spectroscopic analysis of terbium β-diketonate complexes-based xerogel matrices as a function of Tb+3 concentrations has been realized using UV–visible absorption, (FTIR) spectroscopy and luminescence measurement. The luminescence behavior of Tb3+ ions can be improved in such matrices. The complex can be incorporated into the silica matrix at the same time as the hydrolysis and condensation reaction of the silanes start. The green emission of Tb3+ ions at 544 nm was clearly observed and indicates the good stability of Tb complex in silica sol–gel matrices.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Altaf M, Stoeckli-Evans H (2009) Transit Met Chem 34:613–620

    Article  Google Scholar 

  2. Quirino WG, Legnani C, Cremona M, Lima PP, Junior SA, Malta OL (2006) Thin Solid Films 494:23–27

    Article  Google Scholar 

  3. Reyes R, Cremona M, Teotonio EES, Brito HF, Malta OL (2004) Chem Phys Lett 396:54–58

    Article  Google Scholar 

  4. Chen FF, Bian ZQ, Huang CH (2009) J Rare Earth 27:345–355

    Article  Google Scholar 

  5. Hasegawa Y, Nakanishia T (2015) RSC Adv 5:338–353

    Article  Google Scholar 

  6. Listkowski A, Pietraszkiewicz M, Accorsi G, Mohanraj J (2010) Synth Met 160:2377–2380

    Article  Google Scholar 

  7. Bhattacharjee CR, Das G, Goswami P, Mondal P, Prasad SK, Rao DSS (2011) Polyhedron 30:1040–1047

    Article  Google Scholar 

  8. Kagkelar A, Bekiari V, Stathatos E, Papaefstathiou GS, Raptopoulou CP, Zafiropoulos TF (2009) J Lumin 129:578–583

    Article  Google Scholar 

  9. Hasagawa Y, Kimura Y, Murakoshi K, Wada Y, Kim J-H, Nakashima N, Yamanaka T, Yanagida S (1996) J Phys Chem 100:10201

    Article  Google Scholar 

  10. Liu HG, Park S, Jang K, Zhang WS, Seo HJ, Lee YI (2003) Mater Chem Phys 82:84–92

    Article  Google Scholar 

  11. Tanner PA, Yan B, Zhang HJ (2000) J Mater Sci 35:4325

    Article  Google Scholar 

  12. Matthews LR, Knobbe ET (1993) Chem Mater 5:1697

    Article  Google Scholar 

  13. Seddon ABIE (1998) Proc Circuits Devices Syst 145:369

    Article  Google Scholar 

  14. Pope EJA (1994) J Sol-Gel Sci Technol 2:717

    Article  Google Scholar 

  15. Boilot JP, Chaput F, Gacoin T, Malier L, Canva M, Brun A, Lévy Y, Galaup JPCR (1996) Acad Sci Paris 322:27

    Google Scholar 

  16. Philip L, Annick S, Jules M, Jan D, Christiane G, Koen B, Kris D (2005) Chem Mater 17(20):5194–5201

    Article  Google Scholar 

  17. Sabbatini N, Guardigli M, Lehn JM (1993) Coord Chem Rev 123:201

    Article  Google Scholar 

  18. Viana B, Koslova N, Aschehoug P, Sanchez CJ (1995) Mater Chem 5:719

    Article  Google Scholar 

  19. Campostrini R, Ferrari M, Montagna M, Pilla OJ (1992) Mater Res 7:745

    Article  Google Scholar 

  20. Lochhead M, Bray KL (1995) Chem Mater 7:572

    Article  Google Scholar 

  21. Wei Q, Li X, Long X (2008) Opt Mater 30:1495–1498

    Article  Google Scholar 

  22. Twej WAA (2013) JNCS 382:45–51

    Google Scholar 

  23. Aly HF, AbdelKerim FM, Kandil AT (1971) J Inorg Nucl Chem 33:4340

    Article  Google Scholar 

  24. Xiang YU, Zhidong YU (2012) Proceedings of international conference on mechanical engineering and material science (MEMS)

  25. Jobson KW, Phillips PJ, Pidgeon CR (2008) Opt Mater 30:740–742

    Article  Google Scholar 

  26. Yanagida S, Hasegawa Y, Murakoshi K, Wada Y, Nakashima N, Yamanaka T (1998) Coord Chem Rev 171:461

    Article  Google Scholar 

  27. Iwamuro M, Adachi T, Wada Y, Kitamura T, Nakashima N, Yanagida S (2000) Bull Chem Soc Jpn 73:1359

    Article  Google Scholar 

  28. Hiroshi M, Toshimi F (2006) Jpn J Appl Phys 45:13

    Article  Google Scholar 

  29. Birkes JB (1970) Photophysics of aromatic molecules. Wiley Interscience, London

    Google Scholar 

  30. Al-Wattar AJ, Chiad BT, Twej WAA, Al-Awadi SS (2006) CEJP 4:341–348

    Google Scholar 

  31. Iler RK (1979) The chemistry of silica: solubility, polymerization, colloid and surface properties and biochemistry of silica, chap 5. John-Wiley & Sons, New York, p 209

    Google Scholar 

  32. Wang, Yan (2011) J Fluoresc 21(3):1239–1247

    Article  Google Scholar 

  33. Hongxu Z, Qivhong Y, Xu J, Zhang H (2009) J Alloys Comped 471:474–476

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank Dr. Oday A. Hammadi at Al-Iraqia University (Baghdad) for his valuable assistance in preparation and correspondences of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Firas J. Kadhim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadhim, F.J., Twej, W.A.A., Mahdi, T.S. et al. Photoluminescence analysis for terbium β-diketonate complex-based silica xerogel matrices. J Sol-Gel Sci Technol 76, 150–155 (2015). https://doi.org/10.1007/s10971-015-3761-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3761-x

Keywords

Navigation