Skip to main content
Log in

Synthesis and characterization of gahnite-based microwave dielectric ceramics (MDC) for microstrip antennas prepared by a sol–gel method

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Gahnite (zinc aluminate) nanoparticle powder is synthesized by a sol–gel method and used to fabricate a microstrip antenna. X-ray diffraction analysis indicates the formation of a face-centered cubic gahnite structure with an average crystallite size of 19.92 nm. The surface morphology of the gahnite is analyzed with field-emission scanning electron microscopy. The presence of water molecules and nitrates within the material is confirmed by Fourier transform infrared analysis. The measured dielectric constant, bandgap and unloaded quality factor of the synthesized powder are 8.70, 4.08 eV and 4592, respectively. The performance of the microstrip antenna is evaluated using return loss, (S11) parameter analysis. The measured impedance bandwidth is 760 MHz in the low-frequency band and 8.1 GHz in the high-frequency band. The overall performance demonstrates that the fabricated ceramic is suitable for application in a microstrip antenna.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Duan X, Yuan D, Sun Z, Sun H, Xu D, Lv M (2003) Synthesis and characterization of ZnAl2O4/SiO2 nanocomposites by sol-gel method. J Cryst Growth 252(1–3):4–8. doi:10.1016/S0022-0248(03)00835-2

    Article  Google Scholar 

  2. Phani AR, Passacantando M, Santucci S (2001) Synthesis and characterization of zinc aluminum oxide thin films by sol-gel technique. Mater Chem Phys 68(1–3):66–71. doi:10.1016/S0254-0584(00)00270-4

    Article  Google Scholar 

  3. Otero Arean C, Sintes Sintes B, Turnes Palomino G, Mas Carbonell C, Escalona Platero E, Parra Soto J (1997) Preparation and characterization of spinel-type high surface area Al2O3–ZnAl2O4 mixed metal oxides by an alkoxide route. Microporous Mater 8(3):187–192

    Article  Google Scholar 

  4. Kurihara LK, Suib SL (1993) Sol-gel synthesis of ternary metal oxides. 1. synthesis and characterization of MAl2O4 (M = Mg, Ni Co, Cu, Fe, Zn, Mn, Cd, Ca, Hg, Sr, and Ba) and lead aluminum oxide (Pb2Al2O5). Chem Mater 5(5):609–613. doi:10.1021/cm00029a006

    Article  Google Scholar 

  5. Wu Y, Du J, Choy K-L, Hench LL, Guo J (2005) Formation of interconnected microstructural ZnAl2O4 films prepared by sol-gel method. Thin Solid Films 472(1–2):150–156. doi:10.1016/j.tsf.2004.07.084

    Article  Google Scholar 

  6. Guilhaume N, Primet M (1994) Catalytic combustion of methane: copper oxide supported on high Specific area spinels synthesized by a sol-gel process. J Chem Soc Faraday Trans 90(11):1541–1545

    Article  Google Scholar 

  7. Zawadzki M (2006) Synthesis of nanosized and microporous zinc aluminate spinel by microwave assisted hydrothermal method (microwave–hydrothermal synthesis of ZnAl2O4. Solid State Sci 8(1):14–18

    Article  Google Scholar 

  8. Giannakas A, Vaimakis T, Ladavos A, Trikalitis P, Pomonis P (2003) Variation of surface properties and textural features of spinel ZnAl2O4 and perovskite LaMnO3 nanoparticles prepared via CTAB–butanol–octane–nitrate salt microemulsions in the reverse and bicontinuous states. J Colloid Interface Sci 259(2):244–253

    Article  Google Scholar 

  9. Kumar K, Ramamoorthy K, Koinkar P, Chandramohan R, Sankaranarayanan K (2006) A novel in situ synthesis and growth of ZnAl2O4 thin films. J Cryst Growth 289(1):405–407

    Article  Google Scholar 

  10. Davar F, Salavati-Niasari M (2011) Synthesis and characterization of spinel type zinc aluminate nanoparticles by a modified sol-gel method using new precursor. J Alloys Compd 509(5):2487–2492. doi:10.1016/j.jallcom.2010.11.058

    Article  Google Scholar 

  11. Pandey R, Gale JD, Sampath SK, Recio JM (1999) Atomistic simulation study of spinel oxides: zinc aluminate and zinc gallate. J Am Ceram Soc 82(12):3337–3341

    Article  Google Scholar 

  12. Ciupina V, Carazeanu I, Prodan G (2004) Characterization of ZnAl2O4 nanocrystals prepared by coprecipitation and microemulsion techniques. J Optoelectron Adv Mater 6(4):1317–1322

    Google Scholar 

  13. Tsunooka T, Androu M, Higashida Y, Sugiura H, Ohsato H (2003) Effects of TiO2 on sinterability and dielectric properties of high-Q forsterite ceramics. J Eur Ceram Soc 23(14):2573–2578

    Article  Google Scholar 

  14. Kim JC, Kim MH, Lim JB, Nahm S, Paik JH, Kim JH (2007) Synthesis and microwave dielectric properties of Re3Ga5O12 (Re: Nd, Sm, Eu, Dy, Yb, and Y) Ceramics. J Am Ceram Soc 90(2):641–644

    Article  Google Scholar 

  15. Polo Fonsecaa C, Fantinib MCA, Nevesa S (2005) Improving the electrochemical properties of porous LiCoO2 films obtained by template synthesis. J. Thin Solid Films 488(1–2):68–73

    Article  Google Scholar 

  16. Duan XL, Yuan DR, Wang LH, Yu FP, Cheng XF, Liu ZQ, Yan SS (2006) Synthesis and optical properties of Co2+-doped ZnGa2O4 nanocrystals. J Cryst Growth 296(2):234–238

    Article  Google Scholar 

  17. Khaledi AG, Afshar S, Jahromi HS (2012) Improving ZnAl2O4 structure by using chelating agents. Mater Chem Phys 135(2–3):855–862. doi:10.1016/j.matchemphys.2012.05.070

    Article  Google Scholar 

  18. Zulfakar MS, Abdullah H, Jalal WNW, Zainuddin Z, Idris S (2014) Study of (1 − x) ZnAl2O4–xSiO2 spinel structures as microwave dielectric materials. J Sol–Gel Sci Technol 71(3):413–420

    Article  Google Scholar 

  19. Kumar RT, Selvam N, Ragupathi C, Kennedy LJ, Vijaya JJ (2012) Synthesis, characterization and performance of porous Sr (II)-added ZnAl2O4 nanomaterials for optical and catalytic applications. Powder Technol 224:147–154

    Article  Google Scholar 

  20. Jamal E, Kumar D, Anantharaman MR (2011) On structural, optical and dielectric properties of zinc aluminate nanoparticles. Bull Mater Sci 34(2):251–259. doi:10.1007/s12034-011-0071-y

    Article  Google Scholar 

  21. Davis M, Gümeci C, Alsup R, Korzeniewski C, Hope-Weeks LJ (2012) Facile synthesis of zinc aluminate nanostructures through an epoxide driven sol-gel route. Mater Lett 73:139–142. doi:10.1016/j.matlet.2011.12.098

    Article  Google Scholar 

  22. Cui M, Wu X, Zhuge L, Meng Y (2007) Effects of annealing temperature on the structure and photoluminescence properties of ZnO films. Vacuum 81(7):899–903

    Article  Google Scholar 

  23. Shin J-H, Choi D-K (2008) Effect of oxygen on the optical and the electrical properties of amorphous InGaZnO thin films prepared by RF magnetron sputtering. J Korean Phys Soc 53(4):2019–2023

    Google Scholar 

  24. Mobarak Y, Bassyouni M, Almutawa M (2013) Materials selection, synthesis, and dielectrical properties of PVC nanocomposites. Adv Mater Sci Eng. doi:10.1155/2013/149672

  25. Koops CG (1951) Phys Rev 83(1):121–124

    Article  Google Scholar 

  26. Wagner KW (1913) Ann Phys 345(5):817–855

    Article  Google Scholar 

  27. Zheng Y, Zhao X, Lei W, Wang S (2006) Effects of Bi2O3 addition on the microstructures and microwave dielectric characteristics of Ba6− 3x(Sm0.2Nd0.8)8+ 2xTi18O54(x = 2/3) ceramics. Mater Lett 60(4):459–463

    Article  Google Scholar 

  28. Huang C-L, Hsu C-S, Lin R-J (2001) Improved high-Q microwave dielectric resonator using ZnO and WO3-doped Zr0.8Sn0.2 TiO4 ceramics. Mater Res Bull 36(11):1985–1993

    Article  Google Scholar 

  29. Surendran K, Santha N, Mohanan P, Sebastian M (2004) Temperature stable low loss ceramic dielectrics in (1-x) ZnAl2O4-xTiO2 system for microwave substrate applications. Eur Phys J B-Condens Matter Complex Syst 41(3):301–306

    Article  Google Scholar 

  30. Wan Jalal WN, Abdullah H, Zulfakar MS (2014) Effect of Zn Site for Ca substitution on optical and microwave dielectric properties of ZnAl2O4 thin films by sol gel method. Adv Mater Sci Eng. doi:10.1155/2014/619024

  31. Balanis CA (1982) Antenna theory: analysis and design, vol 3. Wiley, New Jersey

    Google Scholar 

Download references

Acknowledgments

This work is supported by the University Research fund under Grant code: DIP-2014-029 and Information and Communication Technology Division, Ministry of Posts, Telecommunication and Information Technology, Dhaka, Bangladesh.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashiqur Rahman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, A., Islam, M.T., Zulfakar, M.S. et al. Synthesis and characterization of gahnite-based microwave dielectric ceramics (MDC) for microstrip antennas prepared by a sol–gel method. J Sol-Gel Sci Technol 74, 557–565 (2015). https://doi.org/10.1007/s10971-015-3677-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3677-5

Keywords

Navigation