Skip to main content
Log in

Mesoporous titanosilicates by templated non-hydrolytic sol–gel reactions

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A novel templated non-hydrolytic sol–gel synthesis of titanosilicate xerogels is reported. Acetamide elimination from silicon acetate and titanium diethylamide allows obtaining titanosilicates with a high content of Si–O–Ti bonds but low surface areas. These xerogels lose porosity on calcination. However, with addition of Pluronic P123 as a structure-directing agent, we synthesized mesoporous titanosilicate materials with large surface areas (up to 615 m2 g−1) and well dispersed tetrahedral Ti that are stable at temperatures up to 500 °C. These potential catalysts were characterized by variety of physico-chemical methods (IR, GC–MS, XRD, 29Si and 13C CPMAS NMR, DRUV-Vis, and N2 porosimetry) and tested in cyclohexene epoxidation with cumyl hydroperoxide in toluene. They display catalytic activity with the 100 % selectivity to cyclohexene oxide and high catalytic yields up to 96 % which is comparable to previously reported titanosilicate catalysts.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Mark JE (2006) Some novel polymeric nanocomposites. Acc Chem Res 39:881–888

    Article  Google Scholar 

  2. Kursawe M, Anselmann R, Hilarius V, Pfaff G (2005) Nano-particles by wet chemical processing in commercial applications. J Sol–Gel Sci Technol 33:71–74

    Article  Google Scholar 

  3. Stark WJ, Pratsinis SE, Baiker A (2001) Flame made titania/silica epoxidation catalysts. J Catal 203:516–524

    Article  Google Scholar 

  4. Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110

    Article  Google Scholar 

  5. Atik M, De Lima Neto P, Aegerter MA, Avaca LA (1995) Sol–gel TiO2–SiO2 films as protective coatings against corrosion of 316L stainless steel in H2SO4 solutions. J Appl Electrochem 25:142–148

    Article  Google Scholar 

  6. Yu-Zhang K, Boisjolly G, Rivory J, Kilian L, Colliex C (1994) Characterization of TiO2–SiO2 multilayers by high resolution transmission electron microscopy and electron energy loss spectroscopy. Thin Solid Films 253:299–302

    Article  Google Scholar 

  7. Zhu D-M, Kosugi T (1996) Thermal conductivity of GeO2–SiO2 and TiO2–SiO2 mixed glasses. J Non-Cryst Solids 202:88–92

    Article  Google Scholar 

  8. Aizawa M, Nosaka Y, Fujii N (1994) Preparation of TiO2–SiO2 glass via sol-gel process containing a large amount of chlorine. J Non-Cryst Solids 168:49–55

    Article  Google Scholar 

  9. Satoh S, Susa K, Matsuyama I (1992) Sol–gel-derived binary silica glasses with high refractive index. J Non-Cryst Solids 146:121–128

    Article  Google Scholar 

  10. Comotti M, Li W-C, Spliethoff B, Schüth F (2005) Support effect in high activity gold catalysts for CO oxidation. J Am Chem Soc 128:917–924

    Article  Google Scholar 

  11. Gao X, Wachs IE (1999) Titania-silica as catalysts: molecular structural characteristics and physico-chemical properties. Catal Today 51:233–254

    Article  Google Scholar 

  12. Hutter R, Mallat T, Baiker A (1995) Titania silica mixed oxides II. Catalytic behavior in olefin epoxidation. J Catal 153:177–189

    Article  Google Scholar 

  13. Casuscelli SG, Eimer GA, Canepa A, Heredia AC, Poncio CE, Crivello ME, Perez CF, Aguilar A, Herrero ER (2008) Ti-MCM-41 as catalyst for α-pinene oxidation: study of the effect of Ti content and H2O2 addition on activity and selectivity. Catal Today 133–135:678–683

    Article  Google Scholar 

  14. Eimer GA, Casuscelli SG, Chanquia CM, Elías V, Crivello ME, Herrero ER (2008) The influence of Ti-loading on the acid behavior and on the catalytic efficiency of mesoporous Ti-MCM-41 molecular sieves. Catal Today 133–135:639–646

    Article  Google Scholar 

  15. Eimer G, Casuscelli S, Ghione G, Crivello M, Herrero E (2006) Synthesis, characterization and selective oxidation properties of Ti-containing mesoporous catalysts. Appl Catal A: General 298:232–242

    Article  Google Scholar 

  16. Choi K-M, Yokoi T, Tatsumi T, Kuroda K (2013) A novel route for preparation of Ti-containing mesoporous silica with high catalytic performance by using a molecular precursor tetrakis(tris-tert-butoxysiloxy)titanium. J Mater Chem A 1:2485–2494

    Article  Google Scholar 

  17. Corma A, Camblor MA, Esteve P, Martinez A, Perezpariente J (1994) Activity of Ti-beta catalyst for the selective oxidation of alkenes and alkanes. J Catal 145:151–158

    Article  Google Scholar 

  18. Moliner M, Corma A (2014) Advances in the synthesis of titanosilicates: from the medium pore TS-1 zeolite to highly accessible ordered materials. Microporous Mesoporous Mater 189:31–40

    Article  Google Scholar 

  19. Corma A, Navarro MT, Pariente JP (1994) Synthesis of an ultralarge pore titanium silicate isomorphous to MCM-41 and its application as a catalyst for selective oxidation of hydrocarbons. J Chem Soc Chem Commun 2:147–148

    Article  Google Scholar 

  20. Zhan W, Yao J, Xiao Z, Guo Y, Wang Y, Guo Y, Lu G (2014) Catalytic performance of Ti-SBA-15 prepared by chemical vapor deposition for propylene epoxidation: the effects of SBA-15 support and silylation. Microporous Mesoporous Mater 183:150–155

    Article  Google Scholar 

  21. Dusi M, Mallat T, Baiker A (2000) Epoxidation of functionalized olefins over solid catalysts. Catal Rev Sci Eng 42:213–278

    Article  Google Scholar 

  22. Frenzer G, Maier WF (2006) Amorphous porous mixed oxides: sol–gel ways to a highly versatile class of materials and catalysts. Annu Rev Mater Res 36:281–331

    Article  Google Scholar 

  23. Niederberger M (2007) Nonaqueous sol-gel routes to metal oxide nanoparticles. Acc Chem Res 40:793–800

    Article  Google Scholar 

  24. Debecker DP, Hulea V, Mutin PH (2013) Mesoporous mixed oxide catalysts via non-hydrolytic sol–gel: a review. Appl Catal A: General 451:192–206

    Article  Google Scholar 

  25. Debecker DP, Mutin PH (2012) Non-hydrolytic sol–gel routes to heterogeneous catalysts. Chem Soc Rev 41:3624–3650

    Article  Google Scholar 

  26. Lafond V, Mutin PH, Vioux A (2002) Non-hydrolytic sol–gel routes based on alkyl halide elimination: toward better mixed oxide catalysts and new supports: application to the preparation of a SiO2–TiO2 epoxidation catalyst. J Mol Catal A Chem 182–183:81–88

    Article  Google Scholar 

  27. Pinna N, Garnweitner G, Antonietti M, Niederberger M (2004) Non-aqueous synthesis of high-purity metal oxide nanopowders using an ether elimination process. Adv Mater 16:2196–2200

    Article  Google Scholar 

  28. Caruso J, Hampden-Smith MJ (1997) Ester elimination: a general solvent dependent non-hydrolytic route to metal and mixed-metal oxides. J Sol–Gel Sci Technol 8:35–39

    Google Scholar 

  29. Jansen M, Guenther E (1995) Oxide gels and ceramics prepared by a nonhydrolytic sol–gel process. Chem Mater 7:2110–2114

    Article  Google Scholar 

  30. Styskalik A, Skoda D, Pinkas J, Mathur S (2012) Non-hydrolytic synthesis of titanosilicate xerogels by acetamide elimination and their use as epoxidation catalysts. J Sol–Gel Sci Technol 63:463–472

    Article  Google Scholar 

  31. Goubeau J, Mundiel RZ (1953) Uber das trichlorsiliciumacetat. Z Anorg Allg Chem 272:313–326

    Article  Google Scholar 

  32. Bradley DC, Thomas IM (1960) 765. Metallo-organic compounds containing metal-nitrogen bonds. Part I. Some dialkylamino-derivatives of titanium and zirconium. J Chem Soc (Resumed):3857–3861

  33. Rouquerol F, Rouquerol J, Sing K (1999) Adsorption by powders and porous solids. Academic Press, London

    Google Scholar 

  34. Lowell S, Shields JE, Thomas MA, Thommes M (2004) Characterization of porous solids and powders. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  35. Deacon GB, Phillips RJ (1980) Relationship between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord Chem Rev 33:227–250

    Article  Google Scholar 

  36. Doeuff S, Henry M, Sanchez C, Livage J (1987) Hydrolysis of titanium alkoxides: modification of the molecular precursor by acetic acid. J Non-Cryst Solids 89:206–216

    Article  Google Scholar 

  37. Dutoit DCM, Schneider M, Baiker A (1995) Titania-silica mixed oxides. 1. Influence of sol-gel and drying conditions on structural properties. J Catal 153:165–176

    Article  Google Scholar 

  38. Y-l Su, Wang J, H-z Liu (2002) FTIR spectroscopic study on effects of temperature and polymer composition on the structural properties of PEO–PPO–PEO block copolymer micelles. Langmuir 18:5370–5374

    Article  Google Scholar 

  39. Balmer ML, Bunker BC, Wang LQ, Peden CHF, Su Y (1997) Solid-state 29Si MAS NMR study of titanosilicates. J Phys Chem B 101:9170–9179

    Article  Google Scholar 

  40. Sindorf DW, Maciel GE (1982) Cross-polarization magic-angle-spinning silicon-29 nuclear magnetic resonance study of silica gel using trimethylsilane bonding as a probe of surface geometry and reactivity. J Phys Chem 86:5208–5219

    Article  Google Scholar 

  41. Labouriau A, Higley TJH, Earl WL (1998) Chemical shift prediction in the 29Si MAS NMR of titanosilicates. J Phys Chem 102:2897–2904

    Article  Google Scholar 

  42. Li G, Zhao XS (2006) Characterization and photocatalytic properties of titanium-containing mesoporous SBA-15. Ind Eng Chem Res 45:3569–3573

    Article  Google Scholar 

  43. Cojocariu AM, Mutin PH, Dumitriu E, Aboulaich A, Vioux A, Fajula F, Hulea V (2010) Non-hydrolytic SiO2–TiO2 mesoporous xerogels—Efficient catalysts for the mild oxidation of sulfur organic compounds with hydrogen peroxide. Catal Today 157:270–274

    Article  Google Scholar 

  44. Krivtsov IV, Ilkaeva MV, Samokhina VD, Avdin VV, Khainakov SA, Uchaev DA, Garcia JR (2013) Synthesis of silica–titania composite oxide via “green” aqueous peroxo-route. J Sol–Gel Sci Technol 67:665–669

    Article  Google Scholar 

  45. Luan Z, Kevan L (1997) Electron spin resonance and diffuse reflectance ultraviolet-visible spectroscopies of vanadium immobilized at surface titanium centers of titanosilicate mesoporous TiMCM-41 molecular sieves. J Phys Chem B 101:2020–2027

    Article  Google Scholar 

  46. Wu ZY, Tao YF, Lin Z, Liu L, Fan XX, Wang Y (2009) Hydrothermal synthesis and morphological evolution of mesoporous titania–silica. J Phys Chem C 113:20335–20348

    Article  Google Scholar 

  47. Andrianainarivelo M, Corriu R, Leclerq D, Mutin PH, Vioux A (1996) Mixed oxides SiO2–ZrO2 and SiO2–TiO2 by a nonhydrolytic sol–gel route. J Mater Chem 6:1665–1671

    Article  Google Scholar 

  48. Zhang HZ, Banfield JF (2000) Phase transformation of nanocrystalline anatase-to-rutile via combined interface and surface nucleation. J Mater Res 15:437–448

    Article  Google Scholar 

  49. Ghosh TB, Dhabal S, Datta AK (2003) On crystallite size dependence of phase stability of nanocrystalline TiO2. J Appl Phys 94:4577–4582

    Article  Google Scholar 

  50. Li A, Jin Y, Muggli D, Pierce DT, Aranwela H, Marasinghe GK, Knutson T, Brockman G, Zhao JX (2013) Nanoscale effects of silica particle supports on the formation and properties of TiO2 nanocatalysts. Nanoscale 5:5854–5862

    Article  Google Scholar 

  51. Evans DL (1982) Glass structure: the bridge between the molten and crystalline states. J Non-Cryst Solids 52:115–128

    Article  Google Scholar 

  52. Sever RR, Alcala R, Dumesic JA, Root TW (2003) Vapor-phase silylation of MCM-41 and Ti-MCM-41. Microporous Mesoporous Mater 66:53–67

    Article  Google Scholar 

  53. Yoon CW, Hirsekorn KF, Neidig ML, Yang X, Tilley TD (2011) Mechanism of the decomposition of aqueous hydrogen peroxide over heterogeneous TiSBA15 and TS-1 selective oxidation catalysts: insights from spectroscopic and density functional theory studies. ACS Catalysis 1:1665–1678

    Article  Google Scholar 

  54. Yang P, Zhao D, Margolese DI, Chmelka BF, Stucky GD (1998) Generalized syntheses of large-pore mesoporous metal oxides with semicrystalline frameworks. Nature 396:152–155

    Article  Google Scholar 

  55. Blasco T, Corma A, Navarro MT, Pariente JP (1995) Synthesis, characterization, and catalytic activity of Ti-MCM-41 structures. J Catal 156:65–74

    Article  Google Scholar 

  56. Koyano KA, Tatsumi T (1996) Synthesis of titanium-containing mesoporous molecular sieves with a cubic structure. Chem Commun 2:145–146

    Article  Google Scholar 

  57. Zhang W, Pinnavaia TJ (1996) Transition metal substituted derivatives of cubic MCM-48 mesoporous molecular sieves. Catal Lett 38:261–265

    Article  Google Scholar 

  58. Rhee C, Lee J (1996) Thermal and chemical stability of titanium-substituted MCM-41. Catal Lett 40:261–264

    Article  Google Scholar 

  59. Corma A, Esteve P, Martínez A (1996) Solvent effects during the oxidation of olefins and alcohols with hydrogen peroxide on Ti-beta catalyst: the influence of the hydrophilicity–hydrophobicity of the zeolite. J Catal 161:11–19

    Article  Google Scholar 

  60. Coles MP, Lugmair CG, Terry KW, Tilley TD (2000) Titania–silica materials from the molecular precursor Ti[OSi(OtBu)3]4: selective epoxidation catalysts. Chem Mater 12:122–131

    Article  Google Scholar 

Download references

Acknowledgments

Authors thank the project CEITEC–Central European Institute of Technology CZ.1.05/1.1.00/02.0068, KONTAKT II LH11028 and GACR P207/11/0555 for the financial assistance. J.P. thanks to the Fulbright Foundation for a scholarship. A.S. thanks to the Brno City Municipality for Brno Ph.D. Talent Scholarship. Authors thank to L. Simonikova and Dr. K. Novotny for ICP-OES analyses, L. Elenchin and L. Krauskova for DRUV-Vis spectra, Dr. M. Klementova for TEM analyses and Dr. J. Literak for GC-FID measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiri Pinkas.

Additional information

Dedicated to Professor Malcolm H. Chisholm on the occasion of his 70th birthday.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Skoda, D., Styskalik, A., Moravec, Z. et al. Mesoporous titanosilicates by templated non-hydrolytic sol–gel reactions. J Sol-Gel Sci Technol 74, 810–822 (2015). https://doi.org/10.1007/s10971-015-3666-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3666-8

Keywords

Navigation