Skip to main content
Log in

Comparison of optical and structural properties of Cu doped and Cu/Zr co-doped TiO2 nanopowders calcined at various temperatures

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

TiO2 nanopowders doped with Cu and Zr were prepared via process-controlled sol–gel method. The effects of Zr and Cu doping on the structural and photocatalytic properties of synthesized nanopowders have been studied by X-ray diffraction (XRD), scanning electron microscope, transmission electron microscope, FTIR, and UV–Vis absorption spectroscopy. XRD results suggested that adding dopants has a great effect on crystallinity and particle size of TiO2. Titania rutile phase formation was inhibited by Zr4+ and promoted by Cu2+ doping. The photocatalytic activity was evaluated by degradation kinetics of aqueous methyl orange under visible spectra radiation. The results showed that the photocatalytic activity of the 15 % Zr-doped TiO2 nanopowder has a larger degradation efficiency than 5 % Cu-doped and pure TiO2 under visible light.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Nature 238:37–38

    Article  Google Scholar 

  2. Samuneva B, Kozhukharov V (1993) Mater Sci 28:2353–2360

    Article  Google Scholar 

  3. Wang CY, Liu CY, Shen T (1997) J Photochem Photobiol A Chem 109:65–70

    Article  Google Scholar 

  4. Palmer FL, Eggins BR (2002) J Photochem Photobiol 148:137–143

    Article  Google Scholar 

  5. Yang SW, Gao L (2005) J Am Ceram Soc 88:968–970

    Article  Google Scholar 

  6. Karakitsou KE, Verykios XE (1993) J Phys Chem B 97:1184–1189

    Article  Google Scholar 

  7. Hu C, Lan Y, Hu X, Wang A (2006) J Phys Chem B 110:4066–4072

    Article  Google Scholar 

  8. Sakatani Y, Grosso D, Nicole L, Boissiere C, Illia S, Sanchez C (2007) J Mater Chem 16:77–82

    Article  Google Scholar 

  9. Fujishima A, Rao TN, Tryk DA (2001) J Photochem Photobiol C Photochem Rev 1:1–21

    Article  Google Scholar 

  10. Parkin IP, Palgrave RG (2005) J Mater Chem 15:1689–1695

    Article  Google Scholar 

  11. Mills A, Lee SK (2006) J Photochem Photobiol A Chem 182:181–186

    Article  Google Scholar 

  12. Zanderna AW, Rao CNR, Honig JM (1958) Trans Faraday Soc 54:1069–1073

    Article  Google Scholar 

  13. Subramanian V, Wolf E, Kamat PV (2001) J Phys Chem B 105:11439–11446

    Article  Google Scholar 

  14. Rajeshwar K, Tacconi NR, Chenthamarakshan CR (2001) Chem Mater 13:2765–2782

    Article  Google Scholar 

  15. Okada K, Yamamoto N, Kameshima Y, Yasumori A, MacKenzie K (2001) J Am Ceram Soc 84:1591–1596

    Article  Google Scholar 

  16. Ilkhechi NN, Kaleji KB (2014) J Sol-Gel Sci Technol 69:351–356

    Article  Google Scholar 

  17. Hanaor DAH, Sorrell CC (2011) J Mater Sci 46:855–874

    Article  Google Scholar 

  18. Ohtsuka Y, Fujiki Y, Suzuki Y (1982) J Jpn Assoc Mineral Petrol Econ Geol 77:17–124

    Article  Google Scholar 

  19. Iida Y, Ozaki S (1961) J Am Ceram Soc 44:120–127

    Article  Google Scholar 

  20. Chao HE, Yun YU, Xingfang HU, Larbot A (2003) J Eur Ceram Soc 23:1457–1464

    Article  Google Scholar 

  21. Yin S, Ihara K, Aita Y, Komatsu M, Sato T (2006) J Photochem Photobiol A Chem 179:105–114

    Article  Google Scholar 

  22. Yin S, Yamaki H, Komatsu M, Zhang Q, Wang J, Tang Q (2003) J Mater Chem 13:2996–3001

    Article  Google Scholar 

  23. Colon G, Hidalgo MC, Munuera G, Ferino I, Cutrufello MG, Navio JA (2006) Appl Catal B Environ 63:45–59

    Article  Google Scholar 

  24. Jin Z, Zhang X, Li Y, Li S, Lu G (2007) Catal Commun 8:1267–1273

    Article  Google Scholar 

  25. Cuiying H, Wansheng Y, Ligin D, Zhibin L, Zhengang S, Lancui Z (2006) Chin J Catal 27:203–209

    Article  Google Scholar 

  26. Ihara T, Miyoshi M, Ando M, Sugihara S, Iriyama Y (2001) J Mater Sci 36:4201–4207

    Article  Google Scholar 

  27. Ihara T, Miyoshi M, Iriyana Y, Matsumoto O, Sugihara S (2003) Appl Catal B Environ 42:403–409

    Article  Google Scholar 

  28. Prokes SM, Gole JL, Chen X, Burda C, Carlos WE (2005) Adv Funct Mater 15:161–167

    Article  Google Scholar 

  29. Sham EL, Aranda MAG, Farfan-Torres EM, Gottifredi JC (1998) J Solid State Chem 139:225–232

    Article  Google Scholar 

  30. Liping L, Yonggang S, Yao Z, Dong W, Yuhan S (2007) Thin Solid Films 515:7765–7771

    Article  Google Scholar 

  31. Cosentino IC, Muccillo ENS, Muccillo R (2003) Sens Actuator B 96:677–683

    Article  Google Scholar 

  32. Azough F, Freer R, Petzelt J (1993) J Mater Sci 28:2273–2276

    Article  Google Scholar 

  33. Manr´ıquez ME, López T, Gómez R, Navarrete J (2004) J Mol Catal A Chem 220:229–237

    Article  Google Scholar 

  34. Kapusuz D, Park J, Ozturk A (2013) J Phys Chem Solids 74:1026–1031

    Article  Google Scholar 

  35. Ilkhechi NN, Koozegar-Kaleji B, Dousi F (2015) Opt Quant Electron 47:633–642

    Article  Google Scholar 

  36. Rogéria RG, Younes M, Mohamed A, Sidney JLR (1999) Mater Res 2:11–15

    Google Scholar 

  37. Hussain ST, Mazhar M, Siddiqa M, Javid H, Siddiqa M (2012) Catal J 5:21–30

    Google Scholar 

  38. Kaleji KB, Sarraf-Mamoory R, Nakata N, Fujishima A (2011) J Sol-Gel Sci Technol 60(2):99–107

    Article  Google Scholar 

  39. Adriana Z (2008) Recent Pat Eng 2:157–164

    Article  Google Scholar 

  40. Akpan UG, Hameed BH (2010) Appl Catal A 375:1–11

    Article  Google Scholar 

  41. Ramesh T, Saravanamuthu V, Shik M (2008) Korean J Chem Eng 25(1):64–72

    Article  Google Scholar 

  42. Beydoun D, Amal R, Low G, McEvoy S (1999) J Nanopart Res 1:439–458

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrollah Najibi Ilkhechi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilkhechi, N.N., Kaleji, B.K., Salahi, E. et al. Comparison of optical and structural properties of Cu doped and Cu/Zr co-doped TiO2 nanopowders calcined at various temperatures. J Sol-Gel Sci Technol 74, 765–773 (2015). https://doi.org/10.1007/s10971-015-3661-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3661-0

Keywords

Navigation