Skip to main content
Log in

Antibacterial activities of sol–gel derived ZnO-multilayered thin films: p-NiO heterojunction layer effect

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Sol–gel dip coating method has been employed for the deposition of nanostructured single nickel oxide (NiO) and zinc oxide (ZnO) films and multilayered NiO/ZnO/NiO and ZnO/NiO/ZnO films. The structural, morphology and optical properties of prepared films were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–vis spectroscopy, respectively. XRD analysis showed that ZnO-based films crystallized in write phase and presented an epitaxial orientation depending on the substrate. SEM images also showed uniform size distribution around 30–70 nm for all samples. Antibacterial effectiveness of NiO and ZnO- based films were tested against general Escherichia coli (E. coli ATCC 25922) and Streptococcus aureus (S. aureus, ATCC 29213) as Gram negative and Gram positive model, respectively, using the so-called drop-test method under UV light illumination and dark conditions. ZnO/NiO/ZnO film was found to be the most toxic among tested samples, followed by ZnO, NiO/ZnO/NiO and NiO films. Samples exposure to UV light resulted in higher activity compared to dark conditions against both E. coli and S. aureus, but considerably more effective in the former case. The obtained results were discussed according to the lattice matching between the heteroepitaxial films and structural modification as key roles on the preferential growth orientation and antibacterial activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Danese PN (2002) Antibiofilm approaches: prevention of catheter colonization. Chem Biol 9:873–880

    Article  Google Scholar 

  2. Lewis K, Klibanov AM (2005) Surpassing nature: rational design of sterile-surface materials. Trends Biotechnol 23:343–348

    Article  Google Scholar 

  3. Sambhy V, MacBride MM, Peterson BR, Sen A (2006) Bromide Nanoparticle/Polymer composites: dual action tunable antimicrobial materials. J Am Chem Soc 128:9798–9808

    Article  Google Scholar 

  4. Femi V et al (2011) Antibacterial effect of ZnO-Au nanocomposites. Int J Biotechnol Eng 1(1):1–8

    Google Scholar 

  5. Applerot G et al (2009) Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS mediated cell injury. Adv Funct Mater 19:1–11

    Article  Google Scholar 

  6. Huang Z et al (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 15:4140–4144

    Article  Google Scholar 

  7. Nair S et al (2009) Role of size scale of ZnO nanoparticles and microparticles on toxicity toward bacteria and osteoblast cancer cells. J Mater Sci Mater Med 20:S235–S241

    Article  Google Scholar 

  8. Poulios I, Makri D, Prohaska X (1999) Photocatalytic treatment of olive milling wastewater: oxidation of protocatechuic acid. Global NEST 1:55–62

    Google Scholar 

  9. Carraway ER, Hoffman AJ, Hoffmann MR (1994) Photocatalytic production of H2O2 and organic acids on quantum-sized semiconductor colloids. Environ Sci Technol 28:786–793

    Article  Google Scholar 

  10. Talebian N, Amininezhad SM, Doudi M (2013) Controllable synthesis of ZnO nanoparticles and their morphology-dependent antibacterial and optical properties. Photochem Photobiol B Biol 120:66–73

    Article  Google Scholar 

  11. Amna T et al (2013) Inactivation of foodborne pathogens by NiO/TiO2 composite nanofibers: a novel biomaterial system. Food Bioprocess Technol 6(4):988–996

    Article  Google Scholar 

  12. Kavitha T, Yuvaraj H (2011) Facile approach to the synthesis of high-quality NiO nanorods: electrochemical and antibacterial properties. J Mater Chem 21(39):15686–15691

    Article  Google Scholar 

  13. Pang H et al (2009) Facile synthesis of nickel oxide nanotubes and their antibacterial, electrochemical and magnetic properties. Communications 48:7542–7544

    Google Scholar 

  14. Tabrez Khan S et al (2013) Comparative effectiveness of NiCl2, Ni- and NiO-NPs in controlling oral bacterial growth and biofilm formation on oral surfaces. Arch Oral Biol 58(12):1804–1811

    Article  Google Scholar 

  15. Baek YW, An YJ (2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis and Streptococcus aureus. Sci Total Environ 409:1603–1608

    Article  Google Scholar 

  16. Wang Z et al (2010) Anti-microbial activities of aerosolized transition metal oxide nanoparticles. Chemosphere 80(5):525–529

    Article  Google Scholar 

  17. Erkan A, Bakir U, Karakas G (2006) Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films, Photocatalytic microbial inactivation over Pd doped SnO2 and TiO2 thin films. J Photochem Photobiol A Chem 184:313–321

    Article  Google Scholar 

  18. Talebian N, Nilforoushan MR, Memarnezhad P (2013) Photocatalytic activities of multilayered ZnO-based thin films prepared by sol–gel route: effect of SnO2 heterojunction layer. J Sol-Gel Sci Technol 65:178–188

    Article  Google Scholar 

  19. Wang YP et al (2011) Transparent conductive and near-infrared reflective Cu-based Al-doped ZnO multilayer films grown by magnetron sputtering at room temperature. Appl Surf Sci 257(14):5966–5971

    Article  Google Scholar 

  20. Xu L et al (2013) Strong ultraviolet and violet emissions from ZnO/TiO2 multilayer thin films. Opt Mater 35(8):1582–1586

    Article  Google Scholar 

  21. Tian F, Liu Y (2013) Synthesis of p-type NiO/n-type ZnO heterostructure and its enhanced photocatalytic activity. Scr Mater 69:417–419

    Article  Google Scholar 

  22. Luo C et al (2014) Preparation of porous micro-nano-structive NiO/ZnO heterojunction and its photocatalytic property. RSC Adv 49:1854–1860

    Google Scholar 

  23. Zhang Z et al (2010) Electrospun nanofibers of p-type NiO/n-type ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl Mater Interfaces 2(10):2915–2923

    Article  Google Scholar 

  24. Tie-Ping C, Yue-Jun L, Chang-Hua W (2013) Preparation and Photocatalytic Property of NiO/ZnO Heterostructured Nanofibers. J Inorg Mater 28(3):295–300

    Article  Google Scholar 

  25. Wang X et al (2005) Optical and electrochemical properties of nanosized NiO via thermal decomposition of nickel oxalate nanofibres. Nanotechnology 16:37–39

    Article  Google Scholar 

  26. Nel JM et al (2004) Fabrication and characterisation of NiO/ZnO structures. Sens Actuators B 100:270–276

    Article  Google Scholar 

  27. Hameed A et al (2009) Photocatalytic decolourization of dyes on NiO–ZnO nano-composites. Photochem Photobiol Sci 8:677–682

    Article  Google Scholar 

  28. Shifu C et al (2008) Preparation and activity evaluation of p–n junction photocatalyst NiO/TiO2. J Hazard Mater 155:320–326

    Article  Google Scholar 

  29. Yi S, Hon MH, Lu YM (2011) Fabrication of transparent p-NiO/n-ZnO heterojunction devices for ultraviolet photodetectors. Solid-State Electron 63:37–41

    Article  Google Scholar 

  30. Xi YY et al (2008) NiO/ZnO light emitting diodes by solution-based growth. Appl Phys Lett 92(11):113505–113509

    Article  Google Scholar 

  31. Xu L et al (2012) Heterostructured Nanotubes: coelectrospinning fabrication, characterization, and highly enhanced gas sensing properties. Inorg Chem 51(14):7733–7740

    Article  Google Scholar 

  32. Jafari A et al (2011) Synthesis and antibacterial properties of zinc oxide combined with copper oxide nanocrystals. Orient J Chem 27(3):811–822

    Google Scholar 

  33. Pant B et al (2013) Carbon nanofibers decorated with binary semiconductor (TiO2/ZnO) nanocomposites for the effective removal of organic pollutants and the enhancement of antibacterial activities. Ceram Int 39(6):7029–7035

    Article  Google Scholar 

  34. Stoyanova A et al (2013) Synthesis and antibacterial activity of TiO2/ZnO nanocomposites prepared via nonhydrolytic route. J Chem Technol Metall 48(2):154–161

    Google Scholar 

  35. Liu Z, Bai H, Delai Sun D (2012) Hierarchical CuO/ZnO membranes for environmental applications under the irradiation of visible light. Int J Photoenergy 2012:804840

  36. Talebian N, Nilforoushan MR, Badri Zargar E (2011) Enhanced antibacterial performance of hybrid semiconductor nanomaterials: znO/SnO2 nanocomposite thin films. Appl Surf Sci 258(1):547–555

    Article  Google Scholar 

  37. Abothu IR, Raj PM, Balaraman D (2004) 9th International IEEE, symposium on advanced packaging materials. p. 78

  38. Summi R, Marley JA, Boncelli NF (1984) The ultraviolet absorption edge of stannic oxide (SnO2). J Phys Chem Solids 25:1465–1469

    Article  Google Scholar 

  39. Park J, Ahn K, Nah Y et al (2004) Electrochemical and electrochromic properties of Ni oxide thin films prepared by a sol–gel method. J Sol–Gel Sci Technol 31:323–328

    Article  Google Scholar 

  40. Mridha S, Basak D (2007) Effect of thickness on the structural, electrical and optical properties of ZnO films. Mater Res Bull 42:875–882

    Article  Google Scholar 

  41. Lee DN (2003) Elastic properties of thin films of cubic system. Thin Solid Films 434:183–189

    Article  Google Scholar 

  42. Li F, Ding Y, Gao P (2004) Single-crystal hexagonal disks and rings of ZnO: low-temperature, large-scale synthesis and growth mechanism. Angew Chem Int Ed 43:5238–5246

    Article  Google Scholar 

  43. Cho S, Jung SH, Lee KH (2008) Morphology-controlled growth of ZnO nanostructures using microwave irradiati on: from basic to complex structures. J Phys Chem C 112:12769–12776

    Article  Google Scholar 

  44. Barret CS, Massalski TB (1980) Structure of metals. Pergamon Press, Oxford

    Google Scholar 

  45. Arslan A et al (2014) Controlled growth of c-axis oriented ZnO nanorod array films by electrodeposition method and characterization, Spectrochim. Acta A Mol Biomol Spectrosc 128:716–723

    Article  Google Scholar 

  46. Williamson GK, Hall H (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31

    Article  Google Scholar 

  47. Patterson A (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56(10):978–982

    Article  Google Scholar 

  48. Xu L, Shi L, Li X (2008) Effect of TiO2 buffer layer on the structural and optical properties of ZnO thin films deposited by E-beam evaporation and sol–gel method. Appl Surf Sci 255:3230–3234

    Article  Google Scholar 

  49. Singh AV et al (2001) Highly conductive and transparent aluminum-doped zinc oxide thin films prepared by pulsed laser deposition in oxygen ambient. J Appl Phys 90:5661–5665

    Article  Google Scholar 

  50. Adler D, Feinleib J (1970) Electrical and optical properties of narrow-band materials. Phys Rev B 2:3112–3134

    Article  Google Scholar 

  51. Jiles D (2001) Introduction to the electronic properties of materials, 2nd edn. Nelson Thornes, Cheltenham

    Google Scholar 

  52. Campoccia D, Montanaro L, Renata Arciola C (2013) A review of the biomaterials technologies for infection-resistant surfaces. Biomaterials 34:8533–8554

    Article  Google Scholar 

  53. Kohen R, Nyska A (2002) Oxidation of biological systems: oxidative stress phenomena, antioxidants, redox reactions, and methods for their quantification. Toxicol Pathol 6:620–650

    Article  Google Scholar 

  54. Yamamoto O et al (2004) Effect of lattice constant of zinc oxide on antibacterial characteristics. J Mater Sci Mater Med 15(8):847–851

    Article  Google Scholar 

  55. Salah N et al (2011) High-energy ball milling technique for ZnO nanoparticles as antibacterial material. Int J Nanomed 6:863–869

    Article  Google Scholar 

  56. Zhang L et al (2010) Sol-gel growth of hexagonal faceted ZnO prism quantum dots with polar surfaces for enhanced photocatalytic activity. Appl Mater Interfaces 2:1769–1773

    Article  Google Scholar 

  57. Zhang Y et al (2014) The synergetic antibacterial activity of Ag islands on ZnO (Ag/ZnO) heterostructure nanoparticles and its mode of action. J Inorg Biochem 130:74–83

    Article  Google Scholar 

  58. Hrenovic J et al (2012) Antimicrobial activity of metal oxide nanoparticles supported onto natural clinoptilolite. Chemosphere 88:1103–1107

    Article  Google Scholar 

  59. Jones N et al (2008) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. FEMS Microbiol Lett 279:71–76

    Article  Google Scholar 

  60. Yamamoto O (2001) Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater 3:643–646

    Article  Google Scholar 

  61. Franklin NM et al (2007) Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): the importance of particle solubility. Environ Sci Technol 41:8484–8490

    Article  Google Scholar 

  62. Adams LK, Lyon DY, Alvarez PJJ (2006) Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res 40:3527–3532

    Article  Google Scholar 

  63. Makhluf S et al (2005) Microwave-assisted synthesis of nanocrystalline MgO and its use as bacteriocid. Adv Funct Mater 15:1708–1715

    Article  Google Scholar 

  64. Sawai J (2003) Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO and CaO) by conductimetric assay. J Microbiol Methods 54:177–182

    Article  Google Scholar 

  65. Stoimenov PK et al (2002) Metal oxide nanoparticles as bactericidal agents. Langmuir 18:6679–6686

    Article  Google Scholar 

  66. Hirota K et al (2010) Preparation of zinc oxide ceramics with a sustainable antibacterial activity under dark conditions. Ceram Int 36:497–506

    Article  Google Scholar 

  67. Huang L et al (2005) Controllable preparation of Nano–MgO and investigation of its bactericidal properties. J Inorg Biochem 99:986–993

    Article  Google Scholar 

  68. Atmaca S, Gul K, Clcek R (1998) The effect of zinc on microbial growth. Turk J Med Sci 28:595–597

    Google Scholar 

  69. Poynton HC et al (2011) Differential gene expression in Daphnia magna suggests distinct modes of action and bioavailability for ZnO nanoparticles and Zn ions. Environ Sci Technol 45:762–768

    Article  Google Scholar 

  70. Brayner R et al (2006) Toxicological impact studies based on Escherichia colibacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett 6:866–870

    Article  Google Scholar 

  71. Huang Z et al (2008) Toxicological effect of ZnO nanoparticles based on bacteria. Langmuir 24:4140–4144

    Article  Google Scholar 

  72. Thill A et al (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156

    Article  Google Scholar 

  73. Yamamoto O, Sawai J, Sasamoto T (2000) Change in antibacterial characteristics with doping amount of ZnO in MgO–ZnO solid solution. Int J Inorg Mater 2:451–454

    Article  Google Scholar 

  74. Saito T et al (1992) Mode of photocatalytic bactericidal action of powdered semiconductor TiO2 on Mutans streptococci. J Photochem Photobiol B Biol 14:369–379

    Article  Google Scholar 

  75. Fu G, Vary PS, Lin CT (2005) Anatase TiO2 nanocomposites for antimicrobial coatings. J Phys Chem B 109:8889–8898

    Article  Google Scholar 

  76. Akhavan O, Ghaderi E (2009) Bactericidal effects of Ag nanoparticles immobilized on surface of SiO2 thin film with high concentration. Curr Appl Phys 9:1381–1385

    Article  Google Scholar 

  77. Long M et al (2014) Performance and mechanism of standard nano-TiO2 (P-25) in photocatalytic disinfection of foodborne microorganisms–Salmonella typhimurium and Listeria monocytogenes. Food Control 39:68–74

    Article  Google Scholar 

  78. Sinha R et al (2011) Interaction and nanotoxic effect of ZnO and Ag nanoparticles on mesophilic and halophilic bacterial cells. Bioresour Technol 102:1516–1520

    Article  Google Scholar 

  79. Pal A et al (2007) Photocatalytic inactivation of grampositive and gram-negative bacteria using fluorescent light. J Photochem Photobiol A Chem 186:335–341

    Article  Google Scholar 

  80. Kawahara K, Tsuruda K, Morishita M et al (2000) Antibacterial effect of silver–zeolite on oral bacteria under anaerobic conditions. Dent Mater 16:452–4555

    Article  Google Scholar 

  81. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  Google Scholar 

  82. Prescott LM, Harley JP, Klein DA (2002) Microbiology. McGraw-Hill Co., New York

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge financial support from the Islamic Azad University, Shahreza Branch and Falavarjan Branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nasrin Talebian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talebian, N., Doudi, M. & Mogoei, H. Antibacterial activities of sol–gel derived ZnO-multilayered thin films: p-NiO heterojunction layer effect. J Sol-Gel Sci Technol 74, 650–660 (2015). https://doi.org/10.1007/s10971-015-3644-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3644-1

Keywords

Navigation