Skip to main content
Log in

Sol–gel synthesis and characterization of silica–zirconia inorganic polymer as 99Mo/99mTc generator

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

A variety of new silica–zirconia sulfate inorganic polymer sorbent materials, designated as SZ were prepared using the in situ generated zirconium-tetra octanoxide Zr(Oct)4 from condensation of zirconium-tetra-n-butoxide and 1-octanol followed by reaction with tetraethylorthosilicate in ethanolic solution by sol gel method. The prepared SZ sorbents were characterized by FT-IR, SEM, XRD, N2 sorption isotherms and ICP techniques. Different molar ratios of substrates were used in order to study the maximum capacity of MoO4 2− adsorption. Mo adsorption was found to depend on several parameters such as SO4 2−/Zr, Zr/Si molar ratios and gel calcination temperatures. The maximum amount of 99Mo (Mo) adsorption on inorganic polymer was realized to be about 450 mg/g. Notably, elution of technetium-99m with a small volume of saline solution was carried out with about 75 % yield and less than 0.02 % 99Mo breakthrough.

Graphical Abstract

The silica zirconia sulfate inorganic polymers were synthesized by sol–gel method and selected as adsorbent materials for 99Mo/99mTc generator.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Yadav GD, Nair JJ (1999) Micropor Mesopor Mater 33:1

    Article  Google Scholar 

  2. Akkari R, Ghorbel A, Essayem N, Figueras F (2008) Micropor Mesopor Mater 111:62

    Article  Google Scholar 

  3. Ivanov AV, Lysenko SV, Baranova SV, Sungurov AV, Zangelov ThN, Karakhanov EA (2006) Micropor Mesopor Mater 91:254

    Article  Google Scholar 

  4. Tarafdar A, Panda AB, Pramanik P (2005) Micropor Mesopor Mater 84:223

    Article  Google Scholar 

  5. Yanga H, Lua R, Shena L, Songa L, Zhaoa J, Wanga Z, Wang L (2003) Mater Lett 57:2572

    Article  Google Scholar 

  6. Boyd RE (1982) Radiochim Acta 30:123

    Google Scholar 

  7. Zhuikov BL (2014) Appl Radiat Isot 84:48

    Article  Google Scholar 

  8. Boyd RE (1987) Radiochim Acta 41:59

    Google Scholar 

  9. Boyd RE (1997) Appl Radiat Isot 48:1027

    Article  Google Scholar 

  10. Taskaev E, Taskaeva M, Nikolove P (1995) Appl Radiat Isot 46:13

    Article  Google Scholar 

  11. Chattopadhyay S, Das SS, Barua L (2010) Appl Radiat Isot 68:1

    Article  Google Scholar 

  12. Mushtaq A, Haider I (2008) Appl Radiat Isot 66:1079

    Article  Google Scholar 

  13. Monroy-Guzman F, Diaz Archundia LV, Contreras Ramirez A (2003) Appl Radiat Isot 59:27

    Article  Google Scholar 

  14. Chattopadhyay S, Das MK, Sarkar SK, Saraswathy P, Ramamoorthy N (2002) Appl Radiat Isot 57:7

    Article  Google Scholar 

  15. Chakravarty R, Ram R, Dash A, Pillai MRA (2012) Nucl Med Biol 39:916

    Article  Google Scholar 

  16. El-Kolaly MT (1993) J Radioanal Nucl Chem 170:293

    Article  Google Scholar 

  17. Monroy-Guzman F, Gutiérrez TR, Malpica IZL, Cortes SH, Nava PR, Maldonado JCV, Vazquez A (2012) Appl Radiat Isot 70:103

    Article  Google Scholar 

  18. Sararwathy P, Sarkar SK, Arjun G, Nandy SK, Ramamoothy N (2004) Radiochim Acta 92:259

    Article  Google Scholar 

  19. Qazi QM, Ahmad M (2011) Radiochim Acta 99:231

    Article  Google Scholar 

  20. El Absy MA, El Nagar M, Audah AI (1994) J Radioanal Nucl Chem 183:339

    Article  Google Scholar 

  21. Monroy-Guzman F, Santamaria HA, Alvarez IO, Diaz Archandia LV, Cortez Romero O (2007) J Radioanal Nucl Chem 271:523

    Article  Google Scholar 

  22. Monroy-Guzman F, Romero OC, Velázquez HD (2007) J Nucl Radiochem Sci 8:11

    Article  Google Scholar 

  23. Le VS, Izard M, Pellegrini P, Zaw M (2011) J Nucl Med 10:73

    Google Scholar 

  24. Le VS, Nguyen CD, Pellegrini P, Bui VC (2009) Separ Sci Technol 44:1074

    Article  Google Scholar 

  25. Chakravarty R, Shukla RR, Ram R, Tyagi AK, Das A, Venkatesh M (2009) J Label Compd Radiopharm 52(S1):S500

    Google Scholar 

  26. Lee JS, Han HS, Park UJ, Son KJ, Shin HY, Hong SB, Jang KD, Lee JS (2009) US Patent 0277828

  27. Le VS, McBrayer J, Morcos N (2012) Au Patent 2012904683

  28. Chattopadhyay S, Das MK (2008) Appl Radiat Isot 66:1295

    Article  Google Scholar 

  29. Chakravarty R, Shukla R, Tyagi AK, Dash A, Venkatesh M (2010) Appl Radiat Isot 68:229

    Article  Google Scholar 

  30. Sharbatdaran M, Jafari Foruzin L, Farzaneh F, Larijani MM (2013) C R Chim 16:176

    Article  Google Scholar 

  31. Sharbatdarana M, Farzaneha F, Larijani MM (2014) J Mol Catal A Chem 382:79

    Article  Google Scholar 

  32. Bradley DC, Mehrotra RC, Gauer DP (2002) Metal alkoxides. Academic Press, New York

    Google Scholar 

  33. Ward AJ, Pujari AA, Costanzo L, Masters AF, Maschmeyer T (2011) Catal Today 178:187

    Article  Google Scholar 

  34. Parralejo AD, García AM, González JS, Díaz-Díez MÁ, Cuerda-Correa EM (2011) J Non-Cryst Solids 357:1090

    Article  Google Scholar 

  35. Kang DJ, Bae BS (2008) J Non-Cryst Solids 354:4975

    Article  Google Scholar 

  36. Araki S, Kiyohara Y, Imasaka S, Tanaka Sh, Miyake Y (2011) Desalination 266:46

    Article  Google Scholar 

  37. Morks MF (2010) Mater Lett 64:1968

    Article  Google Scholar 

  38. Mishra MK, Tyagi B, Jasra RV (2004) J Mol Catal A Chem 223:61

    Article  Google Scholar 

  39. Wang H, Xu P, Zhong W, Shen L, Du Q (2005) Polym Degrad Stabil 87:319

    Article  Google Scholar 

  40. Wu ZG, Zhao YX, Liu DSh (2004) Micropor Mesopor Mater 68:127

    Article  Google Scholar 

  41. Masteri-Farahani M, Farzaneh F, Ghandi M (2006) J Mol Catal A Chem 243:170

    Article  Google Scholar 

  42. Ramana CV, Atuchin VV, Troitskaia IB, Gromilov SA, Kostrovsky VG, Saupe GB (2009) Solid State Commun 149:6

    Article  Google Scholar 

  43. Osaka M, Tanaka K, Sekine Sh, Akutsu Y, Suzuki T, Mimura H (2012) J Nucl Mater 427:384

    Article  Google Scholar 

  44. Le VS (2013) US Patent 0048568

  45. Dadachov M, Lambrecht RM, Hetheringtion E (1994) J Radioanal Nucl Chem 188:267

    Article  Google Scholar 

  46. Chakravarty R, Shukla R, Gandhi Sh, Ram R, Dash A, Venkatesh M, Tyagi AK (2008) J Nanosci Nanotechnol 8:4447

    Article  Google Scholar 

  47. Tanase M, Tatenuma K, Ishikawa K, Kurosawa K, Nishino M, Hasegawa Y (1997) Appl Radiat Isot 48:607

    Article  Google Scholar 

  48. Evans JV, Moore PW, Shying ME, Sodeau JM, Shying ME, Sodeau JM (1987) Appl Radiat Isot 38:19

    Article  Google Scholar 

Download references

Acknowledgments

The authors would appreciate the Alzahra University and Agricultural, Medical and Industrial Research School (AMIRS) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faezeh Farzaneh.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 2532 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharbatdaran, M., Farzaneh, F., Larijani, M.M. et al. Sol–gel synthesis and characterization of silica–zirconia inorganic polymer as 99Mo/99mTc generator. J Sol-Gel Sci Technol 74, 613–620 (2015). https://doi.org/10.1007/s10971-015-3640-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-015-3640-5

Keywords

Navigation