Skip to main content
Log in

Preparation, characterization and application of soluble TiO2@SiO2 nanospheres by a simple modified sol–gel procedure

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, we presented a simple approach for preparing TiO2@SiO2 nanospheres via ambient temperature sol–gel procedure. Due to the difference of reaction rate, amorphous SiO2 was stabilized in the surface of TiO2 nanospheres. The core–shell structure of the synthesized product were confirmed by FT-IR, XRD, SEM, and TEM analysis. The size of TiO2@SiO2 nanospheres was about 100–140 nm via microscopy analysis, and the thickness of SiO2 shell layer was in the range of 10–20 nm. In addition, the TiO2@SiO2 nanospheres displayed good dispersion in organic solvent, and soluble TiO2@SiO2 nanocomposites were presented in approximate transparent solution. Besides, the prepared PMMA/TiO2@SiO2 nanocomposite films had a well UV-shielding effect with almost blocking the damage of entire UV range, and the nanocomposite films based on the additives of TiO2@SiO2 possessed better UV aging-resistant effect than using the additives of TiO2. Hence, such facile synthesized route can be considered as a simple common method for preparing multifunctional nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Meng X, Zhang Z, Luo N, Cao S, Yang M (2011) Polym Sci Ser A 53:977–983

    Article  Google Scholar 

  2. Tu Y, Zhou L, Jin YZ, Gao C, Ye ZZ, Yang YF, Wang QL (2010) J Mater Chem 20:1594

    Article  Google Scholar 

  3. Althues H, Henle J, Kaskel S (2007) Chem Soc Rev 36:1454–1465

    Article  Google Scholar 

  4. Zhou H, Wang H, Tian X, Zheng K, Wu Z, Ding X, Ye X (2014) Compos Sci Technol 94:105–110

    Article  Google Scholar 

  5. Cui H, Zayat M, Parejo PG, Levy D (2008) Adv Mater 20:65–68

    Article  Google Scholar 

  6. Li Y-Q, Fu S-Y, Mai Y-W (2006) Polymer 47:2127–2132

    Article  Google Scholar 

  7. Wang T, Isimjan TT, Chen J, Rohani S (2011) Nanotechnology 22:265708

    Article  Google Scholar 

  8. Ge J, Zeng X, Tao X, Li X, Shen Z, Yun J, Chen J (2010) J Appl Poly Sci, n/a-n/a

  9. Luo Y-D, Dai C-A, Chiu W-Y (2008) J Polym Sci Part A Polym Chem 46:8081–8090

    Article  Google Scholar 

  10. Li ZZ, Xu SA, Wen LX, Liu F, Liu AQ, Wang Q, Sun HY, Yu W, Chen JF (2006) J Control Release 111:81–88

    Article  Google Scholar 

  11. Tao P, Viswanath A, Schadler LS, Benicewicz BC, Siegel RW (2011) ACS Appl Mater Interfaces 3:3638–3645

    Article  Google Scholar 

  12. Li S, Toprak MS, Jo YS, Dobson J, Kim DK, Muhammed M (2007) Adv Mater 19:4347–4352

    Article  Google Scholar 

  13. Lü C, Yang B (2009) J Mater Chem 19:2884

    Article  Google Scholar 

  14. Wang S, Gong Q, Zhu Y, Liang J (2010) J Dispers Sci Technol 31:1307–1310

    Article  Google Scholar 

  15. Carlotti ME, Ugazio E, Sapino S, Vione D, Fubini B, Morel S (2010) J Dispers Sci Technol 31:994–1003

    Article  Google Scholar 

  16. Wei S, Wang Q, Zhu J, Sun L, Lin H, Guo Z (2011) Nanoscale 3:4474–4502

    Article  Google Scholar 

  17. Calvo ME, Castro Smirnov JR, Míguez H (2012) J Polym Sci Pol Phys 50:945–956

    Article  Google Scholar 

  18. Seetapan N, Panyathammaporn T (2008) Macromol Symp 264:50–53

    Article  Google Scholar 

  19. Che H, Han S, Hou W, Liu A, Sun Y, Wang S, Cui X (2011) J Dispers Sci Technol 32:692–701

    Article  Google Scholar 

  20. Liu F, Han E, Ke W (2010) J Dispers Sci Technol 31:611–616

    Article  Google Scholar 

  21. Cai W, Yu J, Gu S, Jaroniec M (2010) Cryst Growth Des 10:3977–3982

    Article  Google Scholar 

  22. Cai W, Yu J, Mann S (2009) Microporous Mesoporous Mater 122:42–47

    Article  Google Scholar 

  23. Cao H, Li J, Shen Y, Li S, Huang F, Xie A (2014) Appl Surf Sci 301:244–249

    Article  Google Scholar 

  24. Wang Y, Zhu S, Chen X, Tang Y, Jiang Y, Peng Z, Wang H (2014) Appl Surf Sci 307:263–271

    Article  Google Scholar 

  25. Wang HY, Chua DHC (2013) Appl Surf Sci 265:66–70

    Article  Google Scholar 

  26. Wu X, Zhang B, Wang D, Hu Z (2012) Mater Lett 70:128–131

    Article  Google Scholar 

  27. Foster AS, Nieminen RM (2004) J Chem Phys 121:9039

    Article  Google Scholar 

  28. Rotzinger FP, Kesselman-Truttmann JM, Hug SJ, Shklover V, Gratzel M (2004) J Phys Chem B 108:5004

    Article  Google Scholar 

  29. Hu J, Zhou Y, He M, Yang X (2014) Mater Lett 116:150–153

    Article  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the financial supports of National Natural Science Foundation of China (Grant Nos. 21306023, 21376051, 21106017 and 51077013), Fund Project for Transformation of Scientific and Technological Achievements of Jiangsu Province of China (Grant No. BA2011086), Key Program for the Scientific Research Guiding Found of Basic Scientific Research Operation Expenditure of Southeast University (Grant No. 3207043101) and Instrumental Analysis Fund of Southeast University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuming Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, J., Zhou, Y. & Sheng, X. Preparation, characterization and application of soluble TiO2@SiO2 nanospheres by a simple modified sol–gel procedure. J Sol-Gel Sci Technol 74, 181–186 (2015). https://doi.org/10.1007/s10971-014-3594-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3594-z

Keywords

Navigation