Skip to main content

Advertisement

Log in

Carvone functionalized iron oxide nanostructures thin films prepared by MAPLE for improved resistance to microbial colonization

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, we aimed to improve and extend the microbiological applications of magnetic nanocarriers, by the successful fabrication of a new nanostructured surface based on 7 nm average diameter magnetite and carvone (Fe3O4@CAR) nanoparticles and to evaluate the biological activity of this material deposed as a thin film by advanced laser techniques (MAPLE). The results demonstrate that the thin surfaces containing the fabricated bio-active nanosystem have a great antimicrobial activity, inhibiting the colonization and biofilm formation of both Gram positive and Gram negative tested species. Furthermore, the in vitro results demonstrate that this material is not cytotoxic, allowing the normal growth and development of human endothelial cells. Our results demonstrate that the fabricated magnetic bioactive nanostructured surfaces have a great potential to be used for the development of novel applications on the medical field, particularly in the control of infectious diseases.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lindsay EN (2001) Infection control programmes to contain antimicrobial resistance. World Health Organization Department of Communicable Disease Surveillance and Response WHO/CDS/CSR/DRS/2001.7. http://www.who.int/csr/resources/publications/drugresist/infection_control.pdf

  2. Raygada JL, Levine DP (2009) Managing CA-MRSA infections: current and emerging options. Infect Med 26:49–58

    Google Scholar 

  3. Hudault S, Guignot J, Servin AL (2001) Escherichia coli strains colonizing the gastrointestinal tract protect germ-free mice against Salmonella typhimurium infection. Gut 49:47–55

    Article  Google Scholar 

  4. Vogt RL, Dippold L (2005) Escherichia coli O157:H7 outbreak associated with consumption of ground beef. Public Health Rep 120:174–178

    Google Scholar 

  5. Todar K (2007) Pathogenic E. coli. In: Online textbook of bacteriology. University of Wisconsin–Madison Department of Bacteriology. Retrieved 30 Nov 2007

  6. Russo TA, Johnson JR (2003) Medical and economic impact of extraintestinal infections due to Escherichia coli: focus on an increasingly important endemic problem. Microbes Infect 5:449–456

    Article  Google Scholar 

  7. Collignon P (2009) Resistant Escherichia coli—we are what we eat. Clin Infect Dis 49:202–204

    Article  Google Scholar 

  8. Laupland KB, Church DL, Vidakovich J, Mucenski M, Pitout JD (2008) Community-onset extended-spectrum β-lactamase (ESBL)-producing Escherichia coli: importance of international travel. J Infect 57:441–448

    Article  Google Scholar 

  9. Tacconelli E, De Angelis G, Cataldo MA, Pozzi E, Cauda R (2008) Does antibiotic exposure increase the risk of methicillin-resistant Staphylococcus aureus (MRSA) isolation? A systematic review and meta-analysis. J Antimicrob Chemother 61:26–38

    Article  Google Scholar 

  10. Goldstein WE (2014) Pharmaceutical accumulation in the environment: prevention, control, health effects, and economic impact. CRC Press 146651745X, 9781466517455

  11. Tan SP, McLoughlin P, O’Sullivan L, Prieto ML, Gardiner GE, Lawlor PG, Hughes H (2013) Development of a novel antimicrobial seaweed extract-based hydrogel wound dressing. Int J Pharm 456:10–20

    Article  Google Scholar 

  12. Charernsriwilaiwat N, Rojanarata T, Ngawhirunpat T, Sukma M, Opanasopit P (2013) Electrospun chitosan-based nanofiber mats loaded with Garcinia mangostana extracts. Int J Pharm 452:333–343

    Article  Google Scholar 

  13. Song J, Bi H, Xie X, Guo J, Wang X, Liu D (2013) Natural borneol enhances geniposide ophthalmic absorption in rabbits. Int J Pharm 445:163–170

    Article  Google Scholar 

  14. Grumezescu AM, Andronescu E, Ficai A, Voicu G, Cocos O, Chifiriuc MC (2013) Eugenia caryophyllata essential oil-SiO2 biohybrid structure for the potentiation of antibiotics activity. Rom J Mater 43:160–166

    Google Scholar 

  15. Saviuc C, Cotar AI, Holban AM, Banu O, Grumezescu AM, Chifiriuc MC (2013) Phenotypic and molecular evaluation of Pseudomonas aeruginosa and Staphylococcus aureus virulence patterns in the presence of some essential oils and their major compounds. Lett Appl NanoBioSci 2:91–96

    Google Scholar 

  16. Grumezescu AM (2013) Essential oils and nanotechnology for combating microbial biofilms. Curr Org Chem 17:90–96

    Article  Google Scholar 

  17. Anghel I, Grumezescu AM, Holban AM, Ficai A, Anghel AG, Chifiriuc MC (2013) Biohybrid nanostructured iron oxide nanoparticles and Satureja hortensis to prevent fungal biofilm development. Int J Mol Sci 14:18110–18123

    Article  Google Scholar 

  18. Grumezescu AM, Holban AM, Andronescu E, Mogosanu GD, Vasile BS, Chifiriuc MC, Lazar V, Andrei E, Constantinescu A, Maniu H (2013) Anionic polymers and 10 nm Fe3O4@UA wound dressings support human fetal stem cells normal development and exhibit great antimicrobial properties. Int J Pharm 463:146–154

    Article  Google Scholar 

  19. Esfandyari-Manesha M, Ghaedib Z, Asemic M, Khanavic M, Manayic A, Jamalifard H, Atyabia F, Dinarvanda R (2013) Study of antimicrobial activity of anethole and carvone loaded PLGA nanoparticles. J Pharm Res 7:290–295

    Article  Google Scholar 

  20. Aggarwal KK, Khanuja ŁSPS, Ahmad A, Santha Kumar TR, Gupta VK, Kumar S (2002) Antimicrobial activity profiles of the two enantiomers of limonene and carvone isolated from the oils of Mentha spicata and Anethum sowa. Flavour Fragr J 17:59–63

    Article  Google Scholar 

  21. Demircia F, Nomab Y, Kırımera N, Baser KHC (2004) Microbial transformation of (Ð)-carvone. Z Naturforsch 59:389–392

    Google Scholar 

  22. Holban AM, Grumezescu AM, Ficai A, Chifiriuc MC, Lazar V, Radulescu R (2013) Fe3O4@C18-carvone to prevent Candida tropicalis biofilm development. Rom J Mater 43:300–305

    Google Scholar 

  23. Holban AM, Grumezescu AM, Gestal MC, Mogoanta L, Mogosanu GD (2014) Novel drug delivery magnetite nano-systems used in antimicrobial therapy. Curr Org Chem 18:185–191

    Article  Google Scholar 

  24. Cristescu R, Popescu C, Socol G, Iordache I, Mihailescu IN, Mihaiescu DE, Grumezescu AM, Andronie A, Stamatin I, Chifiriuc C, Bleotu C, Saviuc C, Popa M, Chrisey DB (2012) Magnetic core/shell nanoparticle thin films deposited by Maple: investigation by chemical, morphological and in vitro biological assays. Appl Surf Sci 258:9250–9255

    Article  Google Scholar 

  25. Mihaiescu DE, Cristescu R, Dorcioman G, Popescu C, Nita C, Socol G, Mihailescu I, Grumezescu AM, Tamas D, Enculescu M, Negrea RF, Ghica C, Chifiriuc C, Bleotu C, Chrisey DB (2013) Functionalized magnetite silica thin films fabricated by MAPLE with antibiofilm properties. Biofabrication 5:015007

    Article  Google Scholar 

  26. Grumezescu AM, Vasile BS, Holban AM (2013) Eugenol functionalized magnetite nanostructures used in anti-infectious therapy. Lett Appl NanoBioSci 2:120–123

    Google Scholar 

  27. Grumezescu V, Holban AM, Grumezescu AM, Socol G, Ficai A, Vasile BS, Trusca R, Bleotu C, Lazar V, Chifiriuc CM, Mogosanu GD (2014) Usnic acid loaded biocompatible magnetic PLGA–PVA microspheres thin films fabricated by MAPLE with increased resistance to staphylococcal colonization. Biofabrication 6:035002

    Article  Google Scholar 

  28. Anghel I, Grumezescu AM, Holban AM, Ficai A, Anghel AG, Chifiriuc MC (2013) Biohybrid nanostructured iron oxide nanoparticles and Satureja hortensis to prevent fungal biofilm development. Int J Mol Sci 14:18110–18123

    Article  Google Scholar 

  29. Anghel I, Holban AM, Andronescu E, Grumezescu AM, Chifiriuc MC (2013) Efficient surface functionalization of wound dressings by a phytoactive nanocoating refractory to Candida albicans biofilm development. Biointerphases 8:12

    Article  Google Scholar 

  30. Anghel I, Grumezescu AM (2013) Hybrid nano-structured coating for increased resistance of prosthetic devices to staphylococcal colonization. Nanoscale Res Lett 8:6

    Article  Google Scholar 

  31. Grumezescu AM, Cotar AI, Andronescu E, Ficai A, Ghitulica CD, Grumezescu V, Vasile BS, Chifiriuc MC (2013) In vitro activity of the new water dispersible Fe3O4@usnic acid nanostructure against planktonic and sessile bacterial cells. J Nanopart Res 15:1766

    Article  Google Scholar 

  32. Holban AM, Grumezescu AM, Andronescu E, Grumezescu V, Chifiriuc CM, Radulescu R (2013) Magnetite-usnic acid nanostructured bioactive material with antimicrobial activity. Rom J Mater 43:402–407

    Article  Google Scholar 

  33. Grumezescu AM, Holban AM, Andronescu E, Ficai A, Bleotu C, Chifiriuc MC (2012) Water dispersible metal oxide nanobiocomposite as a potentiator of the antimicrobial activity of kanamycin. Lett Appl NanoBioSci 1:77–82

    Google Scholar 

  34. Grumezescu V, Holban AM, Iordache F, Socol G, Mogosanu GD, Grumezescu AM, Ficai A, Vasile BS, Truşcă R, Chifiriuc CM, Maniu H (2014) MAPLE fabricated magnetite@eugenol and (3-hidroxybutyric acid-co-3-hidroxyvaleric acid)—polyvinyl alcohol microspheres coated surfaces with anti-microbial properties. Appl Surf Sci 306:16–22

    Article  Google Scholar 

  35. De Carvalho CCCR, Da Fonseca MMR (2006) Carvone: why and how should one bother to produce this terpene. Food Chem 95:413–422

    Article  Google Scholar 

  36. Grumezescu AM, Gestal MC, Holban AM, Grumezescu V, Vasile BŞ, Mogoantă L, Iordache F, Bleotu C, Mogoşanu GD (2014) Biocompatible Fe3O4 increases the efficacy of amoxicillin delivery against Gram-positive and Gram-negative bacteria. Molecules 19:5013–5027

    Article  Google Scholar 

  37. Holban AM, Grumezescu AM, Ficai A, Chifiriuc MC, Lazar V, Radulescu R (2013) Fe3O4@C18-carvone to prevent Candida tropicalis biofilm development. Rom J Mater 43:300–305

    Google Scholar 

Download references

Acknowledgments

The work has been funded by the Sectoral Operational Programme Human Resources Development 2007–2013 of the Ministry of European Funds through the Financial Agreement POSDRU/159/1.5/S/132397 (ExcelDOC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandru Mihai Grumezescu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holban, A.M., Andronescu, E., Grumezescu, V. et al. Carvone functionalized iron oxide nanostructures thin films prepared by MAPLE for improved resistance to microbial colonization. J Sol-Gel Sci Technol 73, 605–611 (2015). https://doi.org/10.1007/s10971-014-3552-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3552-9

Keywords

Navigation