Skip to main content
Log in

Development of polybenzoxazine–silica–titania (PBZ–SiO2–TiO2) hybrid nanomaterials with high surface free energy

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In the present work, silica and titania reinforced polybenzoxazine (PBZ–SiO2–TiO2) hybrid nanomaterial possessing high surface free energy have been developed using dimethylol-functional benzoxazine monomer (4HBA-BZ), tetraethoxysilane (TEOS), 3-(isocyanatopropyl)triethoxysilane (ICPTS), titaniumisopropoxide (TIPO) through an in situ sol–gel process. Data obtained from the contact angle measurement indicate that the hybrid materials are hydrophilic in nature and possess a high surface free energy. For example, hybrid PBZ obtained from 1:1:0.6:0.4 (m:m:w:w) ratio of 4HBA-BZ:ICPTS:TEOS:TIPO (PBST4) exhibit a high surface free energy of 38.2 mJm−2 which is higher than that of neat polybenzoxazine (29.5 mJm−2). Further data resulted from thermal studies indicate that the hybrid PBZ possess higher values of Tg, thermal stability and char yield than those of neat PBZ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Drelich J, Chibowski E, Meng DD, Terpilowski K (2011) Soft Matter 7:9804

    Article  Google Scholar 

  2. Cho JS, Beag YW, Han S, Kim KH, Cho J, Koh SK (2000) Surf Coat Technol 128–129:66

    Article  Google Scholar 

  3. Schrader ME (1984) J Colloid Interface Sci 100:372

    Article  Google Scholar 

  4. Wang R, Sakai N, Fujishima A, Wanatabe T, Hashimoto K (1999) J Phys Chem B 103:2188

    Article  Google Scholar 

  5. Sakai N, Fujishima A, Watanabe T, Hashimoto K (2001) J Phys Chem B 105:3023

    Article  Google Scholar 

  6. Guan K (2005) Surf Coat Technol 191:155

    Article  Google Scholar 

  7. Takeichi T, Kawauchi T, Agag T (2008) Polym J 40:1121

    Article  Google Scholar 

  8. Ghosh NN, Kiskan B, Yagci Y (2007) Prog Polym Sci 32:1344

    Article  Google Scholar 

  9. Wang YX, Ishida H (1999) Polymer 40:4563

    Article  Google Scholar 

  10. Dunkers J, Ishida H (1999) J Polym Sci Part A Polym Chem 37:1913

    Article  Google Scholar 

  11. Kim HD, Ishida H (2003) Macromolecules 36:8320

    Article  Google Scholar 

  12. Aydogan B, Sureka D, Kiskan B, Yagci Y (2010) J Polym Sci Part A Polym Chem 48:5156

    Article  Google Scholar 

  13. Ardhyananta H, Wahid MH, Sasaki M, Agag T, Kawauchi T, Ismail H, Takeichi T (2008) Polymer 49:4585

    Article  Google Scholar 

  14. Liu HC, Su WC, Liu YL (2011) J Mater Chem 21:7182

    Article  Google Scholar 

  15. Agag T, Tsuchiya H, Takeichi T (2004) Polymer 45:7903

    Article  Google Scholar 

  16. Chang CC, Chen WC (2001) J Polym Sci Part A Polym Chem 39:3419

    Article  Google Scholar 

  17. Lu S, Zhang H, Zhao C, Wang X (2006) J Appl Polym Sci 101:1075

    Article  Google Scholar 

  18. Li L, Qinghua L, Jie Y, Zikang Z, Daocheng P, Zongguang W (2002) Mater Sci Eng C 22:61

    Article  Google Scholar 

  19. Devaraju S, Vengatesan MR, Ashok Kumar A, Alagar M (2011) J Sol–Gel Sci Technol 60:33

    Article  Google Scholar 

  20. Baqara M, Agag T, Ishida H, Qutubuddin S (2011) Polymer 52:307

    Article  Google Scholar 

  21. Pandey S, Mishra SB (2011) J Sol–Gel Sci Technol 59:73

    Article  Google Scholar 

  22. Hench LL, West JK (1990) Chem Rev 90:33

    Article  Google Scholar 

  23. Yang Y, Wang P (2006) Polymer 47:2683

    Article  Google Scholar 

  24. Lu HT, Huang SL, Tseng IH, Lin YK, Tsai MH (2013) J Appl Polym Sci 127:145

    Article  Google Scholar 

  25. Guan KS, Xu H, Lu BJ (2004) Trans Nonferr Met Soc 14:251

    Google Scholar 

  26. Devaraju S, Vengatesan MR, Selvi M, Ashok Kumar A, Hamerton I, Go JS, Alagar M (2013) RSC Adv 3:12915

    Article  Google Scholar 

  27. Ogihara H, Xie J, Okagaki J, Saji T (2012) Langmuir 28:4605

    Article  Google Scholar 

  28. Wang L, Zhang C, Zheng S (2011) J Mater Chem 21:19344

    Article  Google Scholar 

  29. Luciani G, Costantini A, Silvestri B, Tescione F, Branda F, Pezzella A (2008) J Sol–Gel Sci Technol 46:166

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank to BRNS, G. No: 2012/37C/9/BRNS, Mumbai, Govt. of India., for the financial support and also thank Dr. Manmohan Kumar, Senior Scientific Officer, BARC, Mumbai. The authors thank PSG college of Technology, Coimbatore for TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Alagar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selvi, M., Devaraju, S., Vengatesan, M.R. et al. Development of polybenzoxazine–silica–titania (PBZ–SiO2–TiO2) hybrid nanomaterials with high surface free energy. J Sol-Gel Sci Technol 72, 518–526 (2014). https://doi.org/10.1007/s10971-014-3467-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3467-5

Keywords

Navigation