Skip to main content
Log in

Coupling between SAXS and Raman spectroscopy applied to the gelation of colloidal zirconium oxy-hydroxide systems

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The colloidal sol–gel transition based on zirconyl nitrate solution systems is investigated in this work. The different steps occurring in the transition have been identified by coupling small angle X-ray scattering with Raman spectroscopy and rheology measurements. The effect of the experimental conditions, such as the zirconium precursor concentration and pH, on the transition is studied. The precise mechanisms involved during the transition are based on a detailed understanding of the nanostructure of these systems. In particular, the dissolution of the zirconium salt leads to the formation of cyclic tetramers that self-organize into a cylindrical shape. We clearly demonstrate that increasing the pH induces a strong attractive interaction between the cylinders, giving rise to a mass fractal dimension. For each system, two characteristic pH values have been determined via rheological measurements analysis, where gelation is notably slow below the first pH value and precipitation occurs above the second one. The complete description of the quaternary system (zirconyl nitrate + acetylacetone + ammonia + water) is an efficient formulation guide for the further combination with a templating route leading to structured Zr-based materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Livage J, Henry M, Sanchez C (1988) Sol-gel chemistry of transition-metal oxides. Prog Solid State Chem 18:259–341

    Article  Google Scholar 

  2. Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265

    Article  Google Scholar 

  3. Petkova N, Dlugocz S, Gutzov S (2011) Preparation and optical properties of transparent zirconia sol-gel materials. J Non-Cryst Solids 357:1547–1551

    Article  Google Scholar 

  4. Riello P, Minesso A, Craievich A, Benedetti A (2003) Synchrotron SAXS study of the mechanisms of aggregation of sulfate zirconia sols. J Phys Chem B 107:3390–3399

    Article  Google Scholar 

  5. Stawski TM, Besselink R, Veldhuis SA, Castricum HL, Blank DHA, ten Elshof JE (2012) Time-resolved small angle X-ray scattering study of sol-gel precursor solutions of lead zirconate titanate and zirconia. J Colloid Interface Sci 369:184–192

    Article  Google Scholar 

  6. Lemonnier S, Grandjean S, Robisson AC, Jolivet JP (2010) Synthesis of zirconia sol stabilized by trivalent cations (yttrium and neodymium or americium): a precursor for Am-bearing cubic stabilized zirconia. Dalton Trans 39:2254–2262

    Article  Google Scholar 

  7. Mondal A, Ram S (2004) Monolithic t-ZrO2 nanopowder through a ZrO(OH)(2)(.)xH(2)O polymer precursor. J Am Ceram Soc 87:2187–2194

    Article  Google Scholar 

  8. Bai L, Wyrwalski F, Lamonier JF, Khodakov AY, Monflier E, Ponchel A (2013) Effects of beta-cyclodextrin introduction to zirconia supported-cobalt oxide catalysts: from molecule-ion associations to complete oxidation of formaldehyde. Appl Catal B-Environ 138:381–390

    Article  Google Scholar 

  9. Singhal A, Toth LM, Beaucage G, Lin JS, Peterson J (1997) Growth and structure of zirconium hydrous polymers in aqueous solutions. J Colloid Interface Sci 194:470–481

    Article  Google Scholar 

  10. Geiculescu AC, Rack HJ (2002) X-ray scattering studies of polymeric zirconium species in aqueous xerogels. J Non-Cryst Solids 306:30–41

    Article  Google Scholar 

  11. Chepurna I, Smotraev R, Kanibolotsky V, Strelko V (2011) Colloidal and chemical aspects of nanosized hydrated zirconium dioxide synthesized via a sol-gel process. J Colloid Interface Sci 356:404–411

    Article  Google Scholar 

  12. Ambrosi M, Fratini EL, Canton P, Dankesreiter S, Baglioni P (2012) Bottom–up/top–down synthesis of stable zirconium hydroxide nanophases. J Mater Chem 22:23497–23505

    Article  Google Scholar 

  13. Hu MZC, Zielke JT, Lin JS, Byers CH (1999) Small-angle X-ray scattering studies of early-stage colloid formation by thermohydrolytic polymerization of aqueous zirconyl salt solutions. J Mater Res 14:103–113

    Article  Google Scholar 

  14. Southon PD, Bartlett JR, Woolfrey JL, Ben-Nissan B (2002) Formation and characterization of an aqueous zirconium hydroxide colloid. Chem Mater 14:4313–4319

    Article  Google Scholar 

  15. Clearfield A (1964) Structural aspects of zirconium chemistry. Rev Pure Appl Chem 14:91

    Google Scholar 

  16. Ivanov VK, Kopitsa GP, Baranchikov AY, Sharp M, Pranzas K, Grigoriev SV (2009) Mesostructure, fractal properties and thermal decomposition of hydrous zirconia and hafnia. Rus J Inorg Chem 54:2091–2106

    Article  Google Scholar 

  17. Ivanov VK, Kopitsa GP, Baranchikov AE, Grigor’ev SV, Haramus VM (2010) Evolution of composition and fractal structure of hydrous zirconia xerogels during thermal annealing. Rus J Inorganic Chem 55:155–161

    Article  Google Scholar 

  18. Rosa MAA, Sanhueza CSS, Santilli CV, Pulcinelli SH, Briois V (2008) Stimuli-responsive controlled growth of mono- and bidimensional particles from basic zirconium sulfate hydrosols. J Phys Chem B 112:9006–9012

    Article  Google Scholar 

  19. Jolivet J-P, Henry M, Livage J (2000) Metal oxide chemistry and synthesis: from solution to solid state. Wiley, EDP Sciences edn., Colorado

    Google Scholar 

  20. Alves-Rosa MA, Martins L, Pulcinelli SH, Santilli CV (2013) Design of microstructure of zirconia foams from the emulsion template properties. Soft Matter 9:550–558

    Article  Google Scholar 

  21. Konishi J, Fujita K, Oiwa S, Nakanishi K, Hirao K (2008) Crystalline ZrO2 monoliths with well-defined macropores and mesostructured skeletons prepared by combining the alkoxy-derived sol-gel process accompanied by phase separation and the solvothermal process. Chem Mater 20:2165–2173

    Article  Google Scholar 

  22. Kohlbrecher J, Bressler I, SASfit (2011) version 0.93.3, http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html

  23. Kohlbrecher J (2012) Paul Scherrer Institute

  24. Zemb T, Lindner P (2002) Scattering methods applied to soft condensed matter, North Holland

  25. Brinker CJ, Scherer GW (1990) Sol-gel science : the physics and chemistry of sol-gel processing

  26. Clearfield A, Vaughan PA (1956) The crystal structure of zirconyl chloride octahydrate and zirconyl bromide octahydrate. Acta Crystallogr 9:555–558

    Article  Google Scholar 

  27. Mak TCW (1968) Refinement of crystal structure of zirconyl chloride octahydrate. Can J Chem 46:3491

    Article  Google Scholar 

  28. Peyre V, Spalla O, Belloni L, Nabavi M (1997) Stability of a nanometric zirconia colloidal dispersion under compression: effect of surface complexation by acetylacetone. J Colloid Interface Sci 187:184–200

    Article  Google Scholar 

  29. Wu H, Xie JJ, Lattuada M, Morbidelli M (2005) Scattering structure factor of colloidal gels characterized by static light scattering, small-angle light scattering, and small-angle neutron scattering measurements. Langmuir 21:3291–3295

    Article  Google Scholar 

  30. Wu H, Xie JJ, Morbidelli M (2013) Kinetics of colloidal gelation and scaling of the gelation point. Soft Matter 9:4437–4443

    Article  Google Scholar 

  31. Sacks MD, Sheu RS (1987) Rheological properties of silica sol-gel materials. J Non-Cryst Solids 92:383–396

    Article  Google Scholar 

  32. Job N, Panariello F, Crine M, Pirard J-P, Leonard A (2007) Rheological determination of the sol-gel transition during the aqueous synthesis of resorcinol–formaldehyde resins. Colloids Surf a-Physicochem Eng Asp 293:224–228

    Article  Google Scholar 

  33. Winter HH, Chambon F (1986) Analysis of linear viscoelasticity of a cross-linking polymer at the gel point. J Rheol 30:367–382

    Article  Google Scholar 

  34. Ponton A, Barboux-Doeuff S, Sanchez C (2005) Physico-chemical control of sol-gel transition of titanium alkoxide-based materials studied by rheology. J Non-Cryst Solids 351:45–53

    Article  Google Scholar 

Download references

Acknowledgments

Financial supports from CEA-DEN are greatly acknowledged. The authors wish to thank Dr. Causse for interesting discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Toquer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gossard, A., Toquer, G., Grandjean, S. et al. Coupling between SAXS and Raman spectroscopy applied to the gelation of colloidal zirconium oxy-hydroxide systems. J Sol-Gel Sci Technol 71, 571–579 (2014). https://doi.org/10.1007/s10971-014-3409-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3409-2

Keywords

Navigation