Skip to main content
Log in

Visible light active Ag, N co-doped titania in the photo-oxidation of some 9-(N,N-dimethylaminomethyl)anthracene systems

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Irradiated semiconductor catalysis in the presence of molecular oxygen can be admitted as an innovative and economical process for the conversion of harmful aromatics to less harmful products. The present work reports the preparation of a co-doped system by sonication assisted sol–gel technique followed by calcination at 500 °C and checks its activity in photo-oxidation reactions. The prepared system was characterized by various physico-chemical techniques such as X-ray diffraction, Raman spectroscopy, IR spectroscopy, TG-DTG, UV-DRS, SEM, and XPS. Thermal stability and structural identity were observed from TG and XRD measurements respectively. On reaction, Tertiary amine appended anthracene and its phenyl substituted derivative in CH3CN yielded Anthraquinone as the major product. Substituted Anthracenemethanamine reacted slowly and a relatively stable intermediate could be isolated at shorter periods of time. The products were separated and purified by column chromatography and the resultant products were characterized thoroughly by 1H NMR, IR spectroscopy and GCMS analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kuvarega AT, Krause RWM, Mamba BB (2011) J Phys Chem C 115:22110–22120

    Article  Google Scholar 

  2. Lin YM, Tseng YH, Huang JH, Chao CC, Chen CC, Wang I (2006) Environ Sci Technol 40:1616–1621

    Article  Google Scholar 

  3. Zhao J, Chen C, Ma W (2005) Top Catal 35:269–278

    Article  Google Scholar 

  4. Anpo MJ (2003) Catal 216:233

    Article  Google Scholar 

  5. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y (2001) Science 293:269–271

    Article  Google Scholar 

  6. Brezova V, Blazkova A, Karpinsky L, Groskova J, Havlinova B, Jorik V, Ceppan M (1997) J Photochem Photobiol A Chem 109:177–183

    Article  Google Scholar 

  7. Ikeda S, Sugiyama N, Pal B, Marci G, Palmisano L, Noguchi H, Uosaki K, Ohtani B (2001) Phys Chem Chem Phys 3:267–273

    Article  Google Scholar 

  8. Fuerte A, Hernandez-Alonso MD. Maira AJ, Martinez-Arias A, Fernandez-Garcia M, Conesa JC, Soria J (2001) Chem Commun 2718–2719

  9. Kuvarega AT, Krause RWM, Mamba BB (2011) J Phys Chem C 115:22110–22120

    Article  Google Scholar 

  10. Liu J, Han R, Zhao Y, Wang H, Lu W, Yu T, Zhang Y (2011) J Phys Chem C 115:4507–4515

    Article  Google Scholar 

  11. Sun X, Liu H, Dong J, Wei J, Zhang Y (2010) Catal Lett 135:219–225

    Article  Google Scholar 

  12. Shi Z, Yao S, Sui C (2011) Catal Sci Technol 1:817–822

    Article  Google Scholar 

  13. Panayotov DA, Burrows SP, Morris JR (2012) J Phys Chem C 116:6623–6635

    Article  Google Scholar 

  14. Vadakkan JJ, Mallia RR, Prathapan S, Rath NP, Unnikrishnan PA (2005) Tetrahedron Lett 46:5919–5922

    Article  Google Scholar 

  15. Song S, Tu JJ, He ZQ, Hong FY, Liu WP, Chen JM (2010) Appl Catal A 378:169–174

    Article  Google Scholar 

  16. Golubovic A, Scepanovic M, Kremenovic A, Askrabic S, Berec V, Dohcevic-Mitrovic Z, Popovic ZV (2009) J Sol–Gel Sci Technol 49:311–319

    Article  Google Scholar 

  17. Ying W, Yan W, Yanling M, Hanming D, Yougkui S, Xian Z, Xiaozhen T (2008) J Phys Chem C 112:6620–6626

    Google Scholar 

  18. Shu Y, Yohei A, Masakazu K, Jinshu W, Qing T, Tsugio S (2005) J Mater Chem 15:674–682

    Article  Google Scholar 

  19. Ye C, Jinlong Z, Feng C, Masakazu A (2007) J Phys Chem C 111:6976–6982

    Article  Google Scholar 

  20. Liu J, Rong H, Zhao Y, Wang H, Lu W, Yu T, Zhang Y (2011) J Phys Chem C 115:4507–4515

    Article  Google Scholar 

  21. Kubelka P, Munk F (1931) Tech Phys 12:593

    Google Scholar 

  22. Choi H, Antoniou MG, Pelaez M, De la Cruz AA, Shoemaker JA, Dionysiou DD (2007) Environ Sci Technol 41:7530–7535

    Article  Google Scholar 

  23. Sakthivel S, Kish H (2003) Chem Phys Chem 4:487–490

    Article  Google Scholar 

Download references

Acknowledgments

MKM is indebted to UGC-BSR for the fellowship. Help received from Dr. S. Prathapan (Associate Professor) and Jomon P. Jacob (SRF), Dept. of Applied Chemistry, CUSAT during photooxidation reaction and STIC, CUSAT for characterization is well acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sugunan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mothi, K.M., Soumya, G., Salim, A.H. et al. Visible light active Ag, N co-doped titania in the photo-oxidation of some 9-(N,N-dimethylaminomethyl)anthracene systems. J Sol-Gel Sci Technol 71, 549–556 (2014). https://doi.org/10.1007/s10971-014-3389-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3389-2

Keywords

Navigation