Skip to main content
Log in

Lamellar mono-amidosil hybrids doped with Rhodamine (B) methyl ester perchlorate

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Ordered mono-amide cross-linked alkyl/siloxane hybrids (mono-amidosils) incorporating a Rhodamine (B) methyl ester perchlorate dye (Rh(B)CH3ClO4) have been synthesized through the sol–gel process and self-directed assembly. The host hybrid matrix m-A(14) is a lamellar bilayer hierarchically structured hybrid composed of short methyl-capped alkyl chains grafted to a siliceous framework through amide groups. At low dye concentration [n = 20, where n is the molar ratio of amide groups per Rh(B)CH3ClO4] a new lamellar structure with higher interlamellar distance than that of m-A(14) is formed, whereas at higher dye content (n = 5) this new lamellar structure coexists with that of m-A(14). The efficient encapsulation of Rh(B)CH3ClO4 provided by m-A(14) via hydrogen bonding interactions ensured the complete dissolution of the dye and induced a blue shift of the emission of the dye with respect to that of the isolated state, leading to an increase in the quantum yield from values below 0.01 % (measured for the isolated dye) to 4 % at n = 20. The formation of non-fluorescent H-type dimers in the sample with n = 5 accounts for the reduction of the quantum yield. The incorporation of Rh(B)CH3ClO4) into m-A(14) was clearly beneficial from the standpoint of the dye’s photostability, allowing to suppress photobleaching during the first 4 h. An intensification of the emission intensity by 50 and 25 % for the emission centered at 600 and 645 nm resulted, respectively, at n = 20.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 3
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sanchez C, Lebeau B, Chaput F, Boilot JP (2003) Optical properties of functional hybrid organic–inorganic nanocomposites. Adv Mater 15:1969–1994

    Article  Google Scholar 

  2. Sanchez C, Julián B, Belleville P, Popall M (2005) Applications of hybrid organic–inorganic nanocomposites. J Mater Chem 15:3559–3592

    Article  Google Scholar 

  3. Lebeau B, Innocenzi P (2011) Hybrid materials for optics and photonics. Chem Soc Rev 40:886–906

    Article  Google Scholar 

  4. Karolin J, Bogen ST, Johansson BA, Molotkovsky JG (1995) Polarized fluorescence and absorption spectroscopy of 1,32-dihydroxy-dotriacontane-bisrhodamine 101 ester. A new and lipid bilayer-spanning probe. J Fluoresc 5:279–285

    Article  Google Scholar 

  5. Miljanic S, Cimerman Z, Frkanec L, Zinic M (2002) Lipophilic derivative of rhodamine 19: characterization and spectroscopic properties. Anal Chim Acta 468:13–25

    Article  Google Scholar 

  6. Ma YJ, Zhou M, Jin XY, Zhang BZ, Chen H, Guo NY (2002) Flow-injection chemiluminescence determination of ascorbic acid by use of the cerium(IV)–Rhodamine B system. Anal Chim Acta 464:289–293

    Article  Google Scholar 

  7. Mohanty J, Nau W (2005) Ultrastable rhodamine with cucurbituril. Angew Chem Int Ed 44:3750–3754

    Article  Google Scholar 

  8. Chen H, Zhou M, Jin XY, Song YM, Zhang ZY, Ma YJ (2003) Chemiluminescence determination of ultramicro DNA with a flow-injection method. Anal Chim Acta 478:31–36

    Article  Google Scholar 

  9. Hinckly DA, Saybold PG, Borris DP (1986) Solvatochromism and thermochromism of rhodamine solutions. Spectrochim Acta A Mol Spectrosc 42:747–754

    Article  Google Scholar 

  10. Best QA, Xu R, McCarroll ME, Wang L, Dyer DJ (2010) Design and investigation of a series of rhodamine-based fluorescent probes for optical measurements of pH. Org Lett 12(14):3219–3221

    Article  Google Scholar 

  11. Cai HH, Wang H, Wang J, Wei W, Yang PH, Cai J (2011) Naked eye detection of glutathione in living cells using rhodamine B-functionalized gold nanoparticles coupled with FRET. Dyes Pigm 92(1):778–782

    Article  Google Scholar 

  12. Silva A, Boto REF, El-Shishtawy RM, Almeida P (2006) Rhodamine B as ligand for affinity chromatography. Fixation studies onto cellulose by a curing method. Eur Polymer J 42:2270–2282

    Article  Google Scholar 

  13. Zollinger H (1991) Color chemistry. syntheses, properties and applications of organic dyes and pigments, 2nd revised edn. VCH, Weinheim

  14. Beija M, Afonso CAM, Martinho JMG (2009) Synthesis and applications of rhodamines derivatives as fluorescent probes. Chem Soc Rev 38:2410–2433

    Article  Google Scholar 

  15. Gonçalves MST (2009) Fluorescent labeling of biomolecules with organic probes. Chem Rev 109:190–212

    Article  Google Scholar 

  16. Ramos SS, Vilhena AF, Santos L, Almeida P (2000) 1H and 13C NMR spectra of commercial rhodamine ester derivatives. Magn Reson Chem 38:475–478

    Article  Google Scholar 

  17. Avnir D, Levy D, Reisfeld R (1984) The nature of the silica cage as reflected by spectral changes and enhanced photostability of trapped rhodamine 66. J Phys Chem 88:5956–5959

    Article  Google Scholar 

  18. Avnir D, Braun S, Lev O, Levy D, Ottolenghi M (1994) Organically doped sol-gel porous glasses: chemical sensors, enzymatic sensors, electrooptical materials, luminescent materials and photochromic materials. In: Klein LC (ed) Sol–gel optics: processing and applications. The Springer International Series in Engineering and Computer Science, vol 259. Kluwer Academic Publishers, Dordrecht, pp 539–582

  19. del Monte F, Levy D (1998) Formation of fluorescent rhodamine B J-dimers in sol–gel glasses induced by the adsorption geometry on the silica surface. J Phys Chem B 102:8036–8041

    Article  Google Scholar 

  20. Yariv E, Schultheiss S, Saraidarov T, Reisfeld R (2001) Efficiency and photostability of dye-doped solid-state lasers in different hosts. Opt Mater 16:29–38

    Article  Google Scholar 

  21. Schultheiss S, Yariv E, Reisfeld R, Dieterbreuer H (2002) Solid state dye lasers: Rhodamines in silica–zirconia materials. Photochem Photobiol Sci 1(5):320–323

    Article  Google Scholar 

  22. Seçkin T, Gultek A, Kartaca S (2003) The grafting of Rhodamine B onto sol–gel derived mesoporous silicas. Dyes Pigm 56:51–57

    Article  Google Scholar 

  23. Ferrer ML, del Monte F, Levy D (2003) Rhodamine 19 fluorescent dimers resulting from dye aggregation on the porous surface of sol–gel silica glasses. Langmuir 19:2782–2786

    Article  Google Scholar 

  24. Alencar MARC, Maciel GS, Araújo CB, Bertholdo R, Messaddeq Y, Ribeiro SJL (2005) Laserlike emission from silica inverse opals infiltrated with Rhodamine 6G. J Non-Cryst Solids 351:1846–1849

    Article  Google Scholar 

  25. Laranjo MT, Stefani V, Benvenutti EV, Costa TMM, Ramminger GO, Gallas MR (2007) Synthesis of ORMOSIL silica/rhodamine 6G: powders and compacts. J Non-Cryst Solids 353:24–30

    Article  Google Scholar 

  26. Deshpande V, Kumar U (2008) Correlation between photophysical properties and lasing performances of Rhodamine-19 in three types of sol–gel glass hosts. J Lumin 128:1121–1131

    Article  Google Scholar 

  27. Tu J, Li N, Chi Y, Qu S, Wang C, Yuan Q, Li X, Qiu S (2009) The study of photoluminescence properties of Rhodamine B encapsulated in mesoporous silica. Mater Chem Phys 118:273–276

    Article  Google Scholar 

  28. Jun T, Habuchi Y, Satoshi H, Martin V, Schuichi S (2011) Control of orientation of rhodamine 6G in organic–inorganic hybrid film by capillary electrophoresis doping technique. Thin Solid Films 519(18):6106–6109

    Article  Google Scholar 

  29. Carbonaro CM (2011) Tuning the formation of aggregates in silica–Rhodamine 6G hybrids by thermal treatment. J Photochem Photobiol, A 222:56–63

    Article  Google Scholar 

  30. Carbonaro CM, Ricci PC, Grandi S, Marceddu M, Corpino R, Salisa M, Anedda A (2012) On the formation of aggregates in silica–rhodamine 6G type II hybrids. RSC Adv 2:1905–1912

    Article  Google Scholar 

  31. Tripathia J, Kellerb JM, Dasc K, Tripathid S, Fatimad A, Shripathid T (2012) Structural, optical and chemical characterization of Rhodamine (B) doped poly (vinyl) alcohol films. Appl Surf Sci 261:481–487

    Article  Google Scholar 

  32. Reisfeld R, Yariv E, Minti H (1997) New developments in solid state lasers. Opt Mater 8:31–36

    Article  Google Scholar 

  33. Carlos LD, de Zea Bermudez V, Amaral VS, Nunes SC, Silva NJO, Ferreira RAS, Santilli CV, Ostrovskii D, Rocha J (2007) Nanoscopic photoluminescence memory as a fingerprint of complexity in self-assembled alkyl/siloxane hybrids. Adv Mater 19:341–348

    Article  Google Scholar 

  34. Nunes SC, Planelles-Aragó J, Ferreira RAS, Carlos LD, de Zea Bermudez V (2010) EuIII-doping of lamellar bilayer and amorphous mono-amide cross-linked alkyl/siloxane hybrids. Eur J Inorg Chem 18:2688–2699

    Article  Google Scholar 

  35. Nunes SC, Ferreira RAS, Carlos LD, Almeida P, de Zea Bermudez V (2013) Lamellar salt-doped hybrids with two reversible order/disorder phase transitions. J Phys Chem B 117(46):14529–14543

    Article  Google Scholar 

  36. Nunes SC, Ferreira CB, Hümmer J, Ferreira RAS, Carlos LD, Almeida P, de Zea Bermudez V (2013) Lamellar mono-amidosil hybrids incorporating monomethinecyanine dyes. J Mater Chem C 1:2290–2301

    Article  Google Scholar 

  37. Clauss J, Schmidt-Rohr K, Adam A, Boeffel C, Spiess H, Stiff W (1992) Macromolecules with aliphatic side chains: side-chain mobility, conformation, and organization from 2D solid-state NMR spectroscopy. Macromolecules 25:5208–5214

    Article  Google Scholar 

  38. Wang L-Q, Liu J, Exarhos GJ, Flanigan KY, Bordia R (2000) Conformation heterogeneity and mobility of surfactant molecules in intercalated clay minerals studied by solid-state NMR. J Phys Chem B 10:2810–2816

    Article  Google Scholar 

  39. Parikh AN, Schivley MA, Koo E, Seshadri K, Aurentz D, Mueller K, Allara DL (1997) n-Alkylsiloxanes: from single monolayers to layered crystals. The formation of crystalline polymers from the hydrolysis of n-Octadecyltrichlorosilane. J Am Chem Soc 119:3135–3143

    Article  Google Scholar 

  40. Carlos LD, de Zea Bermudez V, Ferreira RAS, Marques L, Assunção M (1999) Sol–gel derived urea cross-linked organically silicates. Blue light emission. Chem Mater 11:581–588

    Article  Google Scholar 

  41. Moreau JJE, Pichon BP, Wong Chi Man M, Bied C, Prizkow H, Bantignies J-L, Dieudonne P, Sauvajol J-L (2004) A Better understanding of the self-structuration of bridged silsesquioxanes. Angew Chem Int Ed 43:203–206

    Article  Google Scholar 

  42. Boehm C, Leveiller F, Jacquemain D, Mohwald H, Kjaer K, Als-Nielsen J, Weissbuch I, Leiserowitz L (1994) Packing characteristics of crystalline monolayers of fatty acid salts, at the air-solution interface, studied by grazing incidence X-ray diffraction. Langmuir 10:830–836

    Article  Google Scholar 

  43. Fernandes M, Ferreira RAS, Cattoën X, Carlos LD, Wong Chi Man M, Bermudez V (2013) Photoluminescent lamellar bilayer mono-alkyl-urethanesils. J Sol Gel Sci Technol 65(1):61–73

    Article  Google Scholar 

  44. Nobre SS, Brites CDS, Ferreira RAS, De Zea Bermudez V, Carcel C, Moreau JJE, Rocha J, Wong Chi Man M, Carlos LD (2008) Photoluminescence of Eu(III)-doped lamellar bridged silsesquioxanes self-templated through a hydrogen bonding array. J Mater Chem 18:4172–4182

    Article  Google Scholar 

  45. Nagle JF, Goldstein M (1985) Decomposition of entropy and enthalpy for the melting transition of polyethylene. Macromolecules 18:2643–2652

    Article  Google Scholar 

  46. Porter MD, Bright TB, Allara DL, Childsey CED (1987) Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J Am Chem Soc 109:3559–3568

    Article  Google Scholar 

  47. Singh S, Wegmann J, Albert K, Müller K (2002) Variable temperature FT-IR studies of n-alkyl modified silica gel. J Phys Chem B 106:878–883

    Article  Google Scholar 

  48. Venkataram NV, Vasudevan S (2001) Interdigitation of an intercalated surfactant bilayer. J Phys Chem B 105:7639–7650

    Article  Google Scholar 

  49. Venkataram NV, Bhagyalakshmi S, Vasudevan S, Seshachi R (2002) Conformation and orientation of alkyl chains in the layered organic–inorganic hybrids: (CnH2n+1NH3)2PbI4 (n = 12,16,18). Phys Chem Chem Phys 4:4533–4538

    Article  Google Scholar 

  50. Snyder RG, Strauss HL, Ellinger CA (1982) C-H Stretching modes and the structure of n-alkyl chains. 1. Long, disordered chains. J Phys Chem 86:5145–5150

    Article  Google Scholar 

  51. Macphail RA, Strauss HL, Snyder RG, Ellinger CA (1984) Carbon-hydrogen stretching modes and the structure of n-alkyl chains. 2. Long, all-trans chains. J Phys Chem 88:334–341

    Article  Google Scholar 

  52. Wang R, Baran G, Wunder SL (2000) Packing and thermal stability of polyoctadecylsiloxane compared with octadecylsilane monolayers. Langmuir 16:6298–6305

    Article  Google Scholar 

  53. Skrovanek DJ, Howe SE, Painter PC, Coleman M (1985) Hydrogen bonding in polymers: infrared temperature studies of an amorphous polyamide. Macromolecules 18:1676–1683

    Article  Google Scholar 

  54. Skrovanek DJ, Painter PC, Coleman MM (1986) Hydrogen bonding in polymers. 2. Infrared temperature studies of nylon 11. Macromolecules 19:699–705

    Article  Google Scholar 

  55. Pretsch E, Bühlmann P, Badertscher M (2009) Structure determination of organic compounds. Tables of spectral data, 4th edn. Springer, Berlin

    Google Scholar 

  56. Egorov VV (2009) Theory of the J-band: from the Frenkel exciton to charge transfer. Phys Procedia 2:223–326

    Article  Google Scholar 

  57. Innocenzi P, Kozuka H, Yoko T (1996) Dimer-to-monomer transformation of rhodamine 6G in sol–gel silica films. J Non-Cryst Solids 201:26–36

    Article  Google Scholar 

  58. Arbeloa L, Ojeda PR (1981) Molecular forms of rhodamine B. Chem Phys Lett 79(2):347–350

    Article  Google Scholar 

  59. Vogelsang J, Kasper R, Steinhauer C, Person B, Heilemann M, Sauer M, Tinnefeld P (2008) A reducing and oxidizing system minimizes photobleaching and blinking of fluorescent dyes. Angew Chem Int Ed 47:5465–5469

    Article  Google Scholar 

  60. Hofkens J, Clifford JN, Bell TDM, Tinnefeld P, Heilemann M, Melnikov SM, Hotta J, Sliwa M, Dedecker P, Sauer M, Yeow EKL (2007) Fluorescence of single molecules in polymer films: sensitivity of blinking to local environment. J Phys Chem B 111:6987–6991

    Article  Google Scholar 

  61. Panda SK, Hickey SG, Waurisch C, Eychmuller A (2011) Gradated alloyed CdZnSe nanocrystals with high luminescence quantum yields and stability for optoelectronic and biological applications. J Mater Chem 21:11550–11555

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e a Tecnologia (FCT) and FEDER (contracts PTDC/QUI-QUI/100896/2008, PTDC/CTM-BPC/112774/2009, Pest-C/SAU/UI0709/2011, and Pest-14C/CTM/LA0011/2013). The support of COST Action MP1202880 “Rational design of hybrid organic–inorganic interfaces” is also acknowledged. S. C. Nunes and V. T. Freitas thank FCT for Grants (SFRH/BPD/63152/2009 and SFRH/BD/87403/2012, respectively).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. C. Nunes or V. de Zea Bermudez.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 741 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nunes, S.C., Freitas, V.T., Ferreira, R.A.S. et al. Lamellar mono-amidosil hybrids doped with Rhodamine (B) methyl ester perchlorate. J Sol-Gel Sci Technol 72, 239–251 (2014). https://doi.org/10.1007/s10971-014-3339-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-014-3339-z

Keywords

Navigation