Skip to main content
Log in

Synthesis of YCrO3 nanoparticles through PAA assisted sol–gel route

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

We report the synthesis of nanocrystalline phase-pure YCrO3 powders by a poly acrylic acid (PAA) assisted sol–gel process at a comparatively low calcination temperature of 600 °C. The role of PAA in the powder processing was investigated systemically using Fourier transform infrared (FTIR) spectroscopy, differential thermal and thermogravimetric analyzer (DT/TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). PAA is found to have the desirable property of forming stable complexes with the cations, Y3+ and Cr3+ at a low pH. FTIR results demonstrated that in the gel-precursor, the carboxylate groups of PAA bond to Y3+ and Cr3+ in a monodentate and a bridging bidentate configuration, respectively, owing to the properties of Cr3+ giving the best correlation with PAA. The obtained particles have capsule-like morphology with a mean diameter of 40 nm. It is presumed that this morphology is due to the extended-chain configuration of PAA in the aqueous solution. The method showed a good control over particle size, morphology, chemical homogeneity, stoichiometry and agglomeration of the powders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kleemann W, Borisov P (2008) In: Luk’yanchuk IA, Mezzane D (eds) Smart materials for energy, communications and security, 1st edn. Springer, Netherlands

  2. Scott JF (2007) Nat Mater 6:256–257

    Article  CAS  Google Scholar 

  3. Ghosez P, Triscone JM (2011) Nat Mater 10:269–270

    Article  CAS  Google Scholar 

  4. Mostovoy M (2010) Nat Mater 9:188–190

    CAS  Google Scholar 

  5. Ramesh R (2009) Nature 461:1218–1219

    Article  CAS  Google Scholar 

  6. Martin LW, Crane SP, Chu YH, Holcomb MB, Gajek M, Huijben M, Yang CH, Balke N, Ramesh R (2008) J Phys Condens Matter 20:434220.1–434220.13

    Google Scholar 

  7. Serrao CR, Kundu AK, Krupanidhi SB, Waghmare UV, Rao CNR (2005) Phys Rev B 72:220101.1–220101.4

    Article  Google Scholar 

  8. Tofield BC, Fender BEF (1970) J Phys Chem Solids 31:2741–2749

    Article  CAS  Google Scholar 

  9. Ramesha K, Llobet A, Proffen Th, Serrao CR, Rao CNR (2007) J Phys Condens Matter 19:102202.1–102202.8

    Article  Google Scholar 

  10. Keith ML, Roy R (1954) Am Mineral 39:1–23

    CAS  Google Scholar 

  11. Weber WJ, Griffin CW, Bates JL (1987) J Am Ceram Soc 70:265–270

    Article  CAS  Google Scholar 

  12. Looby JT, Katz L (1954) J Am Chem Soc 76:6029–6030

    Article  CAS  Google Scholar 

  13. Tachiwaki T, Kunifusa Y, Yoshinaka M, Hirota K, Yamaguchi O (2001) Int J Inorg Mater 3:107–111

    Article  CAS  Google Scholar 

  14. Bedekar V, Shukla R, Tyagi AK (2007) Nanotechnology 18:155706.1–155706.6

    Article  Google Scholar 

  15. Sardar K, Lees MR, Kashtiban RJ, Sloan J, Walton RI (2011) Chem Mater 23:48–56

    Article  CAS  Google Scholar 

  16. Zheng M, Gu M, Jin Y, Jin G (2001) Mater Res Bull 36:853–859

    Article  CAS  Google Scholar 

  17. Rao BP, Caltun OF, Kim C (2008) J Optoelectron Adv Mater 10:1885–1888

    CAS  Google Scholar 

  18. Chen DH, He XR (2001) Mater Res Bull 36:1369–1377

    Article  CAS  Google Scholar 

  19. Wang SR, Tseng WJ (2009) J Nanopart Res 11:947–953

    Article  CAS  Google Scholar 

  20. Saha SK, Pathak A, Pramanik P (1995) J Mater Sci Lett 14:35–37

    Article  CAS  Google Scholar 

  21. Sun YK, Oh IH, Kim KY (1997) J Mater Chem 7:1481–1485

    Article  CAS  Google Scholar 

  22. Sun YK, Oh IH, Kim KY (1997) Ind Eng Chem Res 36:4839–4846

    Article  CAS  Google Scholar 

  23. Pearson RG (1968) J Chem Educ 45:581–587

    Article  CAS  Google Scholar 

  24. Pearson RG (1988) Inorg Chem 27:734–740

    Article  CAS  Google Scholar 

  25. Lessing PA (1989) Am Ceram Soc Bull 68:1002–1007

    CAS  Google Scholar 

  26. Kirwan LJ, Fawell PD, Bronswijk WV (2003) Langmuir 19:5802–5807

    Article  CAS  Google Scholar 

  27. Dong J, Ozaki Y, Nakashima K (1997) Macromolecules 30:1111–1117

    Article  CAS  Google Scholar 

  28. Chen HJ, Jian PC, Chen JH, Wang L, Chiu WY (2007) Ceram Int 33:643–653

    Article  CAS  Google Scholar 

  29. Wang L, Zhang Y, Zhu Y (2010) Nano Res 3:317–325

    Article  CAS  Google Scholar 

  30. Dubinsky S, Grader GS, Shter GE, Silverstein MS (2004) Polym Degrad Stab 86:171–178

    Article  CAS  Google Scholar 

  31. Deacon GB, Phillips RJ (1980) Coord Chem Rev 33:227–250

    Article  CAS  Google Scholar 

  32. Nara M, Torri H, Tasumi M (1996) J Phys Chem 100:19812–19817

    Article  CAS  Google Scholar 

  33. Nair SR, Purohit RD, Tyagi AK, Sinha PK, Sharma BP (2008) Mater Res Bull 43:1573–1582

    Article  CAS  Google Scholar 

  34. Suryanarayana C, Norton MG (1998) X-ray diffraction: a practical approach. Plenum Press, New York

    Google Scholar 

  35. Patterson AL (1939) Phys Rev 56:978–982

    Article  CAS  Google Scholar 

  36. Duran A, Arevalo-Lopez AM, Castillo-Martinez E, Garcia-Guaderrama M, Moran E, Cruz MP, Fernandez F, Alario-Franco MA (2010) J Solid State Chem 183:1863–1871

    Article  CAS  Google Scholar 

  37. Patil DS, Venkatramani N, Rohatgi VK (1988) J Mater Sci Lett 7:413–414

    Article  CAS  Google Scholar 

  38. Doyle WP, Eddy P (1967) Spectrochim Acta, Part A 23:1903–1907

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Mr. Hideo Nishioka of JEOL Limited, Japan for providing the TEM support. Financial assistances from UGC-Govt. of India through SAP and DST-Govt. of India through FIST Program are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nandakumar Kalarikkal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krishnan, S., Kalarikkal, N. Synthesis of YCrO3 nanoparticles through PAA assisted sol–gel route. J Sol-Gel Sci Technol 66, 6–14 (2013). https://doi.org/10.1007/s10971-013-2959-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-013-2959-z

Keywords

Navigation