Skip to main content
Log in

Fabrication and properties of MgF2 composite film modified with carbon nanotubes

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs) were used to modify magnesium fluoride (MgF2) film via the spin coating technique. Nanoparticles of MgF2 were in situ synthesized on surfaces of CNTs resulted in the composites (MgF2–CNTs) by means of sol–gel technique. The sizes of the MgF2 nanoparticles in situ synthesized on CNTs surfaces could be modulated by processing the MgF2 sol–gel in different ways. The MgF2–CNTs as prepared was mixed with MgF2 sol to fabricate composite films (MgF2–CNTs/MgF2). Instead of adding directly CNTs, adding MgF2–CNTs, into MgF2 sol could effectively improve the dispersion of CNTs, avoid emergence of carbon clusters in the compsite film, decrease surface roughness of the film, and enhance the interaction between the CNTs and MgF2 matrix. In the paper, the MgF2 nanoparticles were in situ synthesized on the surfaces of multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) respectively to prepare MgF2–SWCNTs/MgF2 and MgF2–MWCNTs/MgF2 composite films. Experimental results showed that the transparency of the MgF2–SWCNTs/MgF2 composite film was higher than that of the MgF2–MWCNTs/MgF2 film in the range of ultraviolet, visible and near-infrared wavelengths. The results showed SWCNTS could be an ideal reinforcement of MgF2 films to get good toughness, and retain its optical transmittance at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  2. Qian D, Wagner GJ, Liu WK et al (2002) Mechanics of carbon nanotubes. Appl Mech Rev 55:495–533

    Article  Google Scholar 

  3. Hone J, Llaguno MC, Biercuk MJ et al (2002) Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A: Mater Sci Process 74:339–343

    Article  CAS  Google Scholar 

  4. Gao L, Zhou XF, Ding YL (2007) Effective thermal and electrical conductivity of carbon nanotube composites. Chem Phys Lett 434:297–300

    Article  CAS  Google Scholar 

  5. Zhou TL, Wang X, Liu XH et al (2010) Improved thermal conductivity of epoxy composites using a hybrid multi-walled carbon nanotube/micro-SiC filler. Carbon 48:1171–1176

    Article  CAS  Google Scholar 

  6. Pasupuleti S, Peddetti R, Santhanam S, Jen KP, Wing ZN, Hecht M, Halloran JP (2008) Toughening behavior in a carbon nanotube reinforced silicon nitride composite. Mater Sci Eng A 491:224–229

    Article  Google Scholar 

  7. Noguchi T, Magario A, Fukazawa S et al (2004) Carbon nanotube/aluminium composites with uniform dispersion. Mater Trans 45(2):602–604

    Article  CAS  Google Scholar 

  8. Laha T, Agarwat A, Tim M et al (2004) Synthesis and characterization of plasma spray formed carbon nanotube reinforced aluminum composite. Mater Sci Eng A 381:249–258

    Article  Google Scholar 

  9. Wang J, Kou H, Liu X et al (2007) Reinforcement of mullite matrix with multi-walled carbon nanotubes. Ceram Int 33(5):719–722

    Article  Google Scholar 

  10. Balani K, Zhang T, Karakoti A, Li WZ et al (2008) In situ carbon nanotube reinforcements in a plasma-sprayed aluminum oxide nanocomposite coating. Acta Mater 56(3):571–579

    Article  CAS  Google Scholar 

  11. Estili M, Kawasaki A (2008) An approach to mass-producing individually alumina-decorated multi-walled carbon nanotubes with optimized and controlled compositions. Scripta Mater 58:906–909

    Article  CAS  Google Scholar 

  12. Morisada Y, Miyamoto Y, Takaura Y et al (2007) Mechanical properties of SiC composites incorporating SiC-coated multi-walled carbon nanotubes. Int J Refract Metal Hard Mater 4(25):322–327

    Article  Google Scholar 

  13. Yan S, Lian G, Xue GY, Xia L et al (2009) Preparation and electrical characterization of carbon nanotube/ZrO2 composite ceramics. J Phys: Conf Ser 152:1–6

    Article  Google Scholar 

  14. Zhan GD, Kuntz JD, Wan J et al (2003) Single-Wall Carbon Nanotubes as Attractive Toughening Agents in Alumina-Based Nanocomposites. Nat Mater 2(1):38–42

    Article  CAS  Google Scholar 

  15. Dusza J, Blugan G, Morgiel J et al (2009) Hot-pressed and spark plasma sintered zirconia/carbon nanofiber composites. J Eur Ceram Soc 29(15):3177–3184

    Article  CAS  Google Scholar 

  16. Inam F, Yan H, Peijs T et al (2010) Electrically conductive alumina–carbon nanocomposites prepared by spark plasma sintering. J Eur Ceram Soc 30(2):153–157

    Article  CAS  Google Scholar 

  17. Jiang L, Gao L (2008) Densified multiwalled carbon nanotubes–titanium nitride composites with enhanced thermal properties. Ceram Int 34(1):231–235

    Article  Google Scholar 

  18. Show Y, Takahashi K (2009) Stainless steel bipolar plate coated with carbon nanotube (CNT)/polytetrafluoroethylene (PTFE) composite film for proton exchange membrane fuel cell (PEMFC). J Power Sour 190:322–325

    Article  CAS  Google Scholar 

  19. Shin DH, Yoon KH, Kwon OH et al (2006) Surface Resistivity and Rheological Behaviors of Carboxylated Multiwall Carbon Nanotube-Filled PET Composite Film. J Appl Polym Sci 99:900–904

    Article  CAS  Google Scholar 

  20. Wang Z, Zhu ZZ, Shi J et al (2007) Electrocatalytic oxidation of formaldehyde on platinum well-dispersed into single-wall carbon nanotube/polyaniline composite film. Appl Surf Sci 253:8811–8817

    Article  CAS  Google Scholar 

  21. Umasankar Y, Shie JW, Chen SM (2009) Electrocatalytic activity of oxygen and hydrogen peroxide reduction at poly (iron tetra(o-aminophenyl) porphyrin) coated multiwalled carbon nanotube composite film. J Electrochem Soc 156(12):238–244

    Article  Google Scholar 

  22. Lee J, Park EJ, Choi J et al (2010) Polyurethane/PEG-modified MWCNT composite film for the chemical vapor sensor application. Synth Met 160:566–574

    Article  CAS  Google Scholar 

  23. Sun ZQ, Cai Q, Song XP (2008) Microstructure and electrical conductivity of Au-MgF2 nanoparticle cermet films. Thin Solid Films 516:2280–2285

    Article  CAS  Google Scholar 

  24. He YP, Zhang ZY, Hoffmann C et al (2008) Embedding Ag nanoparticles into MgF2 nanorod Arrays. Adv Funct Mater 18(11):1676–1684

    Article  CAS  Google Scholar 

  25. Sun ZQ, Xiao L, Cao L et al (2009) Optical nonlinear characteristics of MgF2 films containing Cu nanoparticles. Chin Opt Lett 10(7):964–966

    Google Scholar 

  26. Wojciechowska M, Zielinski M, Pietrowski M (2003) MgF2 as a non-conventional catalyst support. J Fluor Chem 1(120):1–11

    Article  Google Scholar 

  27. Kalevaru VN, Raju BD, Rao VV et al (2009) Preparation, characterization and catalytic evaluation of MgF2 supported V2O5 catalysts for ammoxidation of 3-picoline. Appl Catal A: Gen 352:223–233

    Article  CAS  Google Scholar 

  28. Hannes K, Erhard K, Andreas H et al (2008) Transparent MgF2-films by sol-gel coating: synthesis and optical properties. Thin Solid Films 516:4175–4177

    Google Scholar 

  29. Tsuyoshi M, Hitoshi I, Akira T (2008) Investigation of MgF2 optical thin films with ultralow refractive indices prepared from autoclaved sols. Appl Opt 13(47):246–250

    Google Scholar 

  30. Tsuyoshi M, Hitoshi I, Izumi M et al (2004) Investigations of MgF2 optical thin films prepared from autoclaved sol. J Sol-Gel Sci Technol 32:161–165

    Article  Google Scholar 

  31. Hitoshi I, Shunsuke N, Tsuyoshi M et al (2008) Preparation of MgF2-SiO2 thin films with a low refractive index by a sol-gel process. Appl Opt 13(47):200–205

    Google Scholar 

  32. Wojciechowska M, Czajka B, Pietrowski M et al (2000) MgF2 as a non-conventional catalytic support. Surface and structure characterization. Catal Lett 66(3):147–153

    Article  CAS  Google Scholar 

  33. Zhu YF, Shi L, Liang J et al (2008) Synthesis of zirconia nanoparticles on carbon nanotubes and their potential for enhancing the fracture toughness of alumina ceramics. Compos: Part B 39:1136–1141

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue-Feng Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, FY., Zhu, YF., Jiang, Y. et al. Fabrication and properties of MgF2 composite film modified with carbon nanotubes. J Sol-Gel Sci Technol 58, 587–593 (2011). https://doi.org/10.1007/s10971-011-2431-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-011-2431-x

Keywords

Navigation