Skip to main content
Log in

Synthesis of CeO2 or α–Mn2O3 nanoparticles via sol–gel process and their optical properties

  • Original Paper
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Nanocrystalline cubic fluorite/bixbyite CeO2 or α–Mn2O3 has been successfully synthesized by using methanol as a solvent via sol–gel method calcined at 400 °C. The obtained products were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), UV–vis absorption and Photoluminescence (PL) spectroscopy. TEM reveals that the as-synthesized ultra-fine samples consist of elliptical/spherical and sheet-like morphology of crystalline particles of 8/30 nm, which are weakly aggregated. Optical absorbance spectra reveal that the absorption of ceria in the UV region originates from the charge- transfer transition between the O2− (2p) and Ce4+ (4f) orbit in CeO2. However, α–Mn2O3 nanostructures with nearly pure band gap emission should be of importance for their applications as UV emitters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Rebellato Jacopo, Natile Marta Maria, Glisenti Antonella (2008) Appl Catl A General 339:108

    Article  CAS  Google Scholar 

  2. Kamruddin M, Ajikumar PK, Nithya R, Mangamma G, Tyagi AK, Raj Baldev (2006) Powder Technol 161:145

    Article  CAS  Google Scholar 

  3. Eguchi K (1997) J Alloys Compd 250:486

    Article  CAS  Google Scholar 

  4. Inoue T, Osonoe M, Tohda H, Hiramatsu M (1991) J Appl Phys 69:8313

    Article  CAS  Google Scholar 

  5. Steele BCH (2000) Solid State Ionics 129:95

    Article  CAS  Google Scholar 

  6. Schubert D, Dargusch R, Raitano J, Chan SW (2006) Biochem Biophys Res Commun 342:86

    Article  CAS  Google Scholar 

  7. Brunner TJ, Wick P, Manser P, Spohn P, Grass RN, Limbach LK (2006) Environ Sci Technol 40:4374

    Article  CAS  Google Scholar 

  8. Hirst SM, Karakoti AS, Tyler RD, Sriranganathan N, Sudipta Seal, Reilly CM (2009) Small 5:2848

    Article  CAS  Google Scholar 

  9. Espinal L, Suib SL, Rusling JF (2004) J Am Chem Soc 126:7676

    Article  CAS  Google Scholar 

  10. Chitrakar R, Kanoh H, Kim YS, Miyai Y, Ooi K (2001) J Solid State Chem 160:69

    Article  CAS  Google Scholar 

  11. Armstrong AR, Bruce PG (1996) Nature 381:499

    Article  CAS  Google Scholar 

  12. Ammundsen B, Paulsen J (2001) Adv Mater 13:943

    Article  CAS  Google Scholar 

  13. Baldi M, Sanchez Escribano V, Gallardo Amores JM, Milella F, Busca G (1998) Appl Catal B 17:L175

    Article  CAS  Google Scholar 

  14. Chang YF, McCarty JG (1996) Catal Today 30:163

    Article  CAS  Google Scholar 

  15. Tabuchi M, Ado K (1998) J Electrochem Soc 145:L49

    Article  CAS  Google Scholar 

  16. Yuan ZY, Zhang Z, Du GH, Ren TZ, Su BL (2003) Chem Phys Lett 378:349

    Article  CAS  Google Scholar 

  17. Tsai MS (2004) Mater Sci Eng B Solid State Mater Adv Technol 110:132

    Google Scholar 

  18. Wang X, Li Y (2002) Chem Commun 764:435

    Google Scholar 

  19. Wei S, Lu J, Hu W, Zhang H, Qian Y (2005) Inorg Chem 44:3844

    Article  CAS  Google Scholar 

  20. Fu YP, Lin CH, Hsu CS (2005) J Alloys Compds 391:110

    Article  CAS  Google Scholar 

  21. Xu JX, Li GS, Li LP (2008) Mater Res Bull 43:990

    Article  CAS  Google Scholar 

  22. Zhang DS, Fu HX, Shi LY, Pan CS, Li Q, Chu YL, Yu WY (2007) Inorg Chem 46:2446

    Article  CAS  Google Scholar 

  23. Chen Y, Zhang Y, Yao QZ, Zhou GT, Fu S, Fan H (2007) J Solid State Chem 180:1218

    Article  CAS  Google Scholar 

  24. Patsalas P, Logothetidis S, Metaxa C (2002) Appl Phys Lett 81:466

    Article  CAS  Google Scholar 

  25. Morhed AH, Moussa ME, Bedair SM, Leonard R, Liu SX, El-Masry NA (1997) Appl Phys Lett 75:2389

    Google Scholar 

  26. Tsunekawa S, Fukuda T, Kasuya A (2000) J Appl Phys 87:1318

    Article  CAS  Google Scholar 

  27. Masui T, Fujiwara K, Machida K, Adachi G (1997) Chem Mater 9:2197

    Article  CAS  Google Scholar 

  28. Maensiri S, Masingboon C, Laokul P, Jareonboon W, Promarak V, Anderson PL, Seraphin S (2007) Crystal Growth Design 7:950

    Article  CAS  Google Scholar 

  29. Wang ZL (2004) J Phys Condens Matter 16:R829

    Article  CAS  Google Scholar 

  30. Ningthoujam Raghumani Singh, Kulshreshtha SK (2008) J Mat Res Bulltetin 6:4147

    Google Scholar 

  31. Zhang WF, Yin Z, Zhang MS, Du ZL, Chen WC (1999) J Phys Cond Mat 11:5655

    Article  CAS  Google Scholar 

  32. Zhang WF, Zhang, Yin Z (2000) Phys Stat Sol 179(a):319

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the University Grant Commission for extending financial support to carryout this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Gnanam.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gnanam, S., Rajendran, V. Synthesis of CeO2 or α–Mn2O3 nanoparticles via sol–gel process and their optical properties. J Sol-Gel Sci Technol 58, 62–69 (2011). https://doi.org/10.1007/s10971-010-2356-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-010-2356-9

Keywords

Navigation