Skip to main content
Log in

Crystal structures of putative phosphoglycerate kinases from B. anthracis and C. jejuni

  • Short Communication
  • Published:
Journal of Structural and Functional Genomics

Abstract

Phosphoglycerate kinase (PGK) is indispensable during glycolysis for anaerobic glucose degradation and energy generation. Here we present comprehensive structure analysis of two putative PGKs from Bacillus anthracis str. Sterne and Campylobacter jejuni in the context of their structural homologs. They are the first PGKs from pathogenic bacteria reported in the Protein Data Bank. The crystal structure of PGK from Bacillus anthracis str. Sterne (BaPGK) has been determined at 1.68 Å while the structure of PGK from Campylobacter jejuni (CjPGK) has been determined at 2.14 Å resolution. The proteins’ monomers are composed of two domains, each containing a Rossmann fold, hinged together by a helix which can be used to adjust the relative position between two domains. It is also shown that apo-forms of both BaPGK and CjPGK adopt open conformations as compared to the substrate and ATP bound forms of PGK from other species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Abbreviations

BaPGK:

Phosphoglycerate kinase from Bacillus anthracis

CjPGK:

Phosphoglycerate kinase from Campylobacter jejuni

PGK:

Phosphoglycerate kinase

ATP:

Adenosine triphosphate

ADP:

Adenosine diphosphate

3PG:

3-Phospho-d-glycerate

SAXS:

Small-angle X-ray scattering

ORF:

Open reading frame

HEPES:

2-[4-(2-Hydroxyethyl)piperazin-1-yl]ethanesulfonic acid

TCEP:

Tris(2-carboxyethyl)phosphine-HCl

TEV:

Tobacco etch virus

EDTA:

Ethylenediaminetetraacetic acid

PEG:

Polyethylene glycol

LS-CAT:

Life Science Collaborative Access Team

EMBL:

European Molecular Biology Laboratory

SAD:

Single-wavelength anomalous diffraction

TLS:

Translation/libration/screw

PDB:

Protein Databank

RMSD:

Root mean square deviation

GBS:

Guillain–Barré syndrome

NIAID:

National Institute of Allergy and Infectious Diseases

CSGID:

Center of Structural Genomics for Infectious Disease

References

  1. Riedel S (2005) Anthrax: a continuing concern in the era of bioterrorism. Proc (Bayl Univ Med Cent) 18:234–243

    Google Scholar 

  2. Poropatich KO, Walker CL, Black RE (2010) Quantifying the association between Campylobacter infection and Guillain–Barre syndrome: a systematic review. J Health Popul Nutr 28:545–552

    Article  PubMed  Google Scholar 

  3. Anderson WF (2009) Structural genomics and drug discovery for infectious diseases. Infect Disord Drug Targets 9:507–517

    Article  PubMed  CAS  Google Scholar 

  4. Chen L, Oughtred R, Berman HM, Westbrook J (2004) TargetDB: a target registration database for structural genomics projects. Bioinformatics 20:2860–2862

    Article  PubMed  CAS  Google Scholar 

  5. Blake CC, Rice DW (1981) Phosphoglycerate kinase. Philos Trans R Soc Lond B Biol Sci 293:93–104

    Article  PubMed  CAS  Google Scholar 

  6. Rao DR, Oesper P (1961) Purification and properties of muscle phosphoglycerate kinase. Biochem J 81:405–411

    PubMed  CAS  Google Scholar 

  7. Axelrod B, Bandurski RS (1953) Phosphoglyceryl kinase in higher plants. J Biol Chem 204:939–948

    PubMed  CAS  Google Scholar 

  8. Garfinkel L, Garfinkel D (1985) Magnesium regulation of the glycolytic pathway and the enzymes involved. Magnesium 4:60–72

    PubMed  CAS  Google Scholar 

  9. VandeBerg JL (1985) The phosphoglycerate kinase isozyme system in mammals: biochemical, genetic, developmental, and evolutionary aspects. Isozymes Curr Top Biol Med Res 12:133–187

    PubMed  CAS  Google Scholar 

  10. Vas M, Varga A, Graczer E (2010) Insight into the mechanism of domain movements and their role in enzyme function: example of 3-phosphoglycerate kinase. Curr Protein Pept Sci 11:118–147

    Article  PubMed  CAS  Google Scholar 

  11. Yon JM, Desmadril M, Betton JM, Minard P, Ballery N, Missiakas D, Gaillard-Miran S, Perahia D, Mouawad L (1990) Flexibility and folding of phosphoglycerate kinase. Biochimie 72:417–429

    Article  PubMed  CAS  Google Scholar 

  12. Flachner B, Kovari Z, Varga A, Gugolya Z, Vonderviszt F, Naray-Szabo G, Vas M (2004) Role of phosphate chain mobility of MgATP in completing the 3-phosphoglycerate kinase catalytic site: binding, kinetic, and crystallographic studies with ATP and MgATP. Biochemistry 43:3436–3449

    Article  PubMed  CAS  Google Scholar 

  13. Banks RD, Blake CC, Evans PR, Haser R, Rice DW, Hardy GW, Merrett M, Phillips AW (1979) Sequence, structure and activity of phosphoglycerate kinase: a possible hinge-bending enzyme. Nature 279:773–777

    Article  PubMed  CAS  Google Scholar 

  14. Lallemand P, Chaloin L, Roy B, Barman T, Bowler MW, Lionne C (2011) Interaction of human 3-phosphoglycerate kinase with its two substrates: is substrate antagonism a kinetic advantage? J Mol Biol 409:742–757

    Article  PubMed  CAS  Google Scholar 

  15. Zerrad L, Merli A, Schroder GF, Varga A, Graczer E, Pernot P, Round A, Vas M, Bowler MW (2011) A spring-loaded release mechanism regulates domain movement and catalysis in phosphoglycerate kinase. J Biol Chem 286:14040–14048

    Article  PubMed  CAS  Google Scholar 

  16. Cliff MJ, Bowler MW, Varga A, Marston JP, Szabo J, Hounslow AM, Baxter NJ, Blackburn GM, Vas M, Waltho JP (2010) Transition state analogue structures of human phosphoglycerate kinase establish the importance of charge balance in catalysis. J Am Chem Soc 132:6507–6516

    Article  PubMed  CAS  Google Scholar 

  17. Gondeau C, Chaloin L, Lallemand P, Roy B, Perigaud C, Barman T, Varga A, Vas M, Lionne C, Arold ST (2008) Molecular basis for the lack of enantioselectivity of human 3-phosphoglycerate kinase. Nucleic Acids Res 36:3620–3629

    Article  PubMed  CAS  Google Scholar 

  18. Aslanidis C, Dejong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074

    Article  PubMed  CAS  Google Scholar 

  19. Haun RS, Serventi IM, Moss J (1992) Rapid, reliable ligation-independent cloning of pcr products using modified plasmid vectors. Biotechniques 13:515–518

    PubMed  CAS  Google Scholar 

  20. Eschenfeldt WH, Lucy S, Millard CS, Joachimiak A, Mark ID (2009) A family of LIC vectors for high-throughput cloning and purification of proteins. Methods Mol Biol 498:105–115

    Article  PubMed  CAS  Google Scholar 

  21. Stols L, Gu MY, Dieckman L, Raffen R, Collart FR, Donnelly MI (2002) A new vector for high-throughput, ligation-independent cloning encoding a tobacco etch virus protease cleavage site. Protein Expr Purif 25:8–15

    Article  PubMed  CAS  Google Scholar 

  22. Otwinowski Z, Minor W (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol 276:307–326

    Article  CAS  Google Scholar 

  23. Minor W, Cymborowski M, Otwinowski Z, Chruszcz M (2006) HKL-3000: the integration of data reduction and structure solution—from diffraction images to an initial model in minutes. Acta Crystallogr D 62:859–866

    Article  PubMed  Google Scholar 

  24. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  PubMed  Google Scholar 

  25. Otwinowski Z (1991) Isomorphous replacement and anomalous scattering. In: Wolf W, Evans PR, Leslie AGW (eds) Proceedings of the CCP4 study weekend. SERC Daresbury Laboratory, Warrington, pp 80–86

  26. Cowtan KD, Main P (1993) Improvement of macromolecular electron-density maps by the simultaneous application of real and reciprocal space constraints. Acta Crystallogr D 49:148–157

    Article  PubMed  CAS  Google Scholar 

  27. Perrakis A, Morris R, Lamzin VS (1999) Automated protein model building combined with iterative structure refinement. Nat Struct Biol 6:458–463

    Article  PubMed  CAS  Google Scholar 

  28. Winn MD, Ballard CC, Cowtan KD, Dodson EJ, Emsley P, Evans PR, Keegan RM, Krissinel EB, Leslie AG, McCoy A, McNicholas SJ, Murshudov GN, Pannu NS, Potterton EA, Powell HR, Read RJ, Vagin A, Wilson KS (2011) Overview of the CCP4 suite and current developments. Acta Crystallogr D Biol Crystallogr 67:235–242

    Article  PubMed  Google Scholar 

  29. Terwilliger TC, Berendzen J (1999) Automated MAD and MIR structure solution. Acta Crystallogr D 55:849–861

    Article  PubMed  CAS  Google Scholar 

  30. Terwilliger T (2004) SOLVE and RESOLVE: automated structure solution, density modification, and model building. J Synchrotron Radiat 11:49–52

    Article  PubMed  CAS  Google Scholar 

  31. Terwilliger TC (2002) Automated structure solution, density modification and model building. Acta Crystallogr D 58:1937–1940

    Article  PubMed  Google Scholar 

  32. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D 53:240–255

    Article  PubMed  CAS  Google Scholar 

  33. Adams PD, Afonine PV, Bunkoczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung LW, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH (2010) PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr 66:213–221

    Article  PubMed  Google Scholar 

  34. Emsley P, Cowtan K (2004) Coot: model-building tools for molecular graphics. Acta Crystallogr D 60:2126–2132

    Article  PubMed  Google Scholar 

  35. Painter J, Merritt EA (2006) Optimal description of a protein structure in terms of multiple groups undergoing TLS motion. Acta Crystallogr D Biol Crystallogr 62:439–450

    Article  PubMed  Google Scholar 

  36. Lovell SC, Davis IW, Adrendall WB, de Bakker PIW, Word JM, Prisant MG, Richardson JS, Richardson DC (2003) Structure validation by C alpha geometry: phi, psi and C beta deviation. Proteins 50:437–450

    Article  PubMed  CAS  Google Scholar 

  37. Yang HW, Guranovic V, Dutta S, Feng ZK, Berman HM, Westbrook JD (2004) Automated and accurate deposition of structures solved by X-ray diffraction to the Protein Data Bank. Acta Crystallogr D 60:1833–1839

    Article  PubMed  Google Scholar 

  38. Glaser F, Pupko T, Paz I, Bell RE, Bechor-Shental D, Martz E, Ben-Tal N (2003) ConSurf: identification of functional regions in proteins by surface-mapping of phylogenetic information. Bioinformatics 19:163–164

    Article  PubMed  CAS  Google Scholar 

  39. Ponstingl H, Kabir T, Thornton JM (2003) Automatic inference of protein quaternary structure from crystals. J Appl Crystallogr 36:1116–1122

    Article  CAS  Google Scholar 

  40. Krissinel E, Henrick K (2007) Inference of macromolecular assemblies from crystalline state. J Mol Biol 372:774–797

    Article  PubMed  CAS  Google Scholar 

  41. Zheng H, Chruszcz M, Lasota P, Lebioda L, Minor W (2008) Data mining of metal ion environments present in protein structures. J Inorg Biochem 102:1765–1776

    Article  PubMed  CAS  Google Scholar 

  42. Schrődinger L (2010) The PyMOL molecular graphics system, Version-1.3r1

  43. Bond C (2003) TopDraw: a sketchpad for protein structure topology cartoons RID B-4094-2011. Bioinformatics 19:311–312

    Article  PubMed  CAS  Google Scholar 

  44. Davies GJ, Gamblin SJ, Littlechild JA, Dauter Z, Wilson KS, Watson HC (1994) Structure of the ADP complex of the 3-phosphoglycerate kinase from Bacillus stearothermophilus at 1.65 A. Acta Crystallogr D Biol Crystallogr 50:202–209

    Article  PubMed  CAS  Google Scholar 

  45. Auerbach G, Huber R, Grattinger M, Zaiss K, Schurig H, Jaenicke R, Jacob U (1997) Closed structure of phosphoglycerate kinase from Thermotoga maritima reveals the catalytic mechanism and determinants of thermal stability. Structure 5:1475–1483

    Article  PubMed  CAS  Google Scholar 

  46. Holm L, Rosenstrom P (2010) Dali server: conservation mapping in 3D. Nucleic Acids Res 38:W545–W549

    Article  PubMed  CAS  Google Scholar 

  47. Ye Y, Godzik A (2003) Flexible structure alignment by chaining aligned fragment pairs allowing twists. Bioinformatics 19(Suppl 2):ii246–ii255

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank David R. Cooper, Ivan G. Shabalin, Jing Hou and the members of the Center of Structural Genomics for Infectious Diseases for valuable comments and discussions. This research was funded with Federal funds from the National Institute of Allergy and Infectious Diseases, National Institutes of Health, Department of Health and Human Services, under Contract No. HHSN272200700058C. Use of the Advanced Photon Source was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. Use of the LS-CAT Sector 21 was supported by the Michigan Economic Development Corporation and the Michigan Technology Tri-Corridor for the support of this research program (Grant 085P1000817).

Conflict of interest

None declared.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wladek Minor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zheng, H., Filippova, E.V., Tkaczuk, K.L. et al. Crystal structures of putative phosphoglycerate kinases from B. anthracis and C. jejuni . J Struct Funct Genomics 13, 15–26 (2012). https://doi.org/10.1007/s10969-012-9131-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-012-9131-9

Keywords

Navigation