Skip to main content

Advertisement

Log in

Accuracy of functional surfaces on comparatively modeled protein structures

  • Published:
Journal of Structural and Functional Genomics

Abstract

Identification and characterization of protein functional surfaces are important for predicting protein function, understanding enzyme mechanism, and docking small compounds to proteins. As the rapid speed of accumulation of protein sequence information far exceeds that of structures, constructing accurate models of protein functional surfaces and identify their key elements become increasingly important. A promising approach is to build comparative models from sequences using known structural templates such as those obtained from structural genome projects. Here we assess how well this approach works in modeling binding surfaces. By systematically building three-dimensional comparative models of proteins using Modeller, we determine how well functional surfaces can be accurately reproduced. We use an alpha shape based pocket algorithm to compute all pockets on the modeled structures, and conduct a large-scale computation of similarity measurements (pocket RMSD and fraction of functional atoms captured) for 26,590 modeled enzyme protein structures. Overall, we find that when the sequence fragment of the binding surfaces has more than 45% identity to that of the template protein, the modeled surfaces have on average an RMSD of 0.5 Å, and contain 48% or more of the binding surface atoms, with nearly all of the important atoms in the signatures of binding pockets captured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

PDB:

Protein data bank

EC:

Enzyme commission

CASTp:

Computed atlas of surface topography of proteins

pRMSD:

Pocket root mean square deviation

pvSOAR:

Pocket and void surface patterns of amino acid residues

SOLAR :

Signature of local active regions

References

  1. Kinoshita K, Nakamura H (2003) Identification of protein biochemical functions by similarity search using the molecular surface database ef-site. Protein Sci 12:1589–1595

    Article  PubMed  CAS  Google Scholar 

  2. Fersht A, Matouschek A, Serrano L (1992) The folding of an enzyme: I. theory of protein engineering analysis of stability and pathway of protein folding. J Mol Biol 224:771–782

    Article  PubMed  CAS  Google Scholar 

  3. Bartlett G, Porter C, Borkakoti N, Thornton M (2002) Analysis of catalytic residues in enzyme active sites. J Mol Biol 324:105–121

    Article  PubMed  CAS  Google Scholar 

  4. Putnam C, Arvai A, Bourne Y, Tainer J (2000) Active and inhibited human catalase structures: ligand and nadph binding and catalytic mechanism. J Mol Biol 296:295–309

    Article  PubMed  CAS  Google Scholar 

  5. Virkamaki A, Ueki K, Kahn C (1999) Protein-protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J Clin Invest 103(7):931–943

    Article  PubMed  CAS  Google Scholar 

  6. Ofran Y, Punta M, Schneider R, Rost B (2005) Beyond annotation transfer by homology: novel protein-function prediction methods to assist drug discovery. Drug Discov Today 10:1475–1482

    Article  PubMed  CAS  Google Scholar 

  7. Henrich S, Salo-Ahen O, Huang B, Rippmann F, Cruciani G, Wade R (2010) Computational approaches to identifying and characterizing protein binding sites for ligand design. J Mol Recogn 23:209–219

    CAS  Google Scholar 

  8. Elcock A (2001) Prediction of functionally important residues based solely on the computed energetics of protein structure. J Mol Biol 312:885–896

    Article  PubMed  CAS  Google Scholar 

  9. Ota M, Kinoshita K, Nishikawa K (2003) Prediction of catalytic residues in enzymes based on known tertiary structure, stability profile, and sequence conservation. J Mol Biol 327:1053–1064

    Article  PubMed  CAS  Google Scholar 

  10. Chelliah V, Chen L, Blundell T, Lovell S (2004) Distinguishing structural and functional restraints in evolution in order to identify interaction sites. J Mol Biol 342:1487–1504

    Article  PubMed  CAS  Google Scholar 

  11. Cheng G, Qian B, Samudrala R, Baker D (2005) Improvement in protein functional site prediction by distinguishing structural and functional constraints on protein family evolution using computational design. Nucleic Acids Res 33:5861–5867

    Article  PubMed  CAS  Google Scholar 

  12. Morita M, Nakamura S, Shimizu K (2008) Highly accurate method for ligand-binding site prediction in unbound state (apo) protein structures. Proteins 73:468–479

    Article  PubMed  CAS  Google Scholar 

  13. Boobbyer D, Goodford P, McWhinnie P, Wade R (1989) New hydrogen-bond potentials for use in determining energetically favorable binding sites on molecules of known structure. J Med Chem 32(5):1083–1094

    Article  PubMed  CAS  Google Scholar 

  14. Landon M, Lancia D, Yu J, Thiel S, Vajda S (2007) Identification of hot spots within druggable binding regions by computational solvent mapping of proteins. J Med Chem 50(6):1231–1240

    Article  PubMed  CAS  Google Scholar 

  15. Vajada S, Guarnieri F (2006) Characterization of protein-ligand interaction sites using experimental and computational methods. Curr Opin Drug Di De 9:354–362

    Google Scholar 

  16. Clark M, Guarnieri F, Shkurko I, Wiseman J (2006) Grand canonical monte carlo simulation of ligand-protein binding. J Chem Inf Model 46:231–242

    Article  PubMed  CAS  Google Scholar 

  17. Wade R, Goodford P (1993) Further development of hydrogen bond functions for use in determining energetically favorable binding sites on molecules of known structure. 2. Ligand probe groups with the ability to form more than two hydrogen bonds. J Med Chem 36(1):148–156

    Article  PubMed  CAS  Google Scholar 

  18. Cammer S, Hoffman B, Speir J, Canady M, Nelson M, Knutson S, Gallina M, Baxter S, Fetrow J (2003) Structure-based active site profiles for genome analysis and sub-family classification. J Mol Biol 334(3):387–401

    Article  PubMed  CAS  Google Scholar 

  19. Brylinski M, Skolnick J (2007) A threading-based method (findsite) for ligand-binding site prediction and functional annotation. PNAS 105:129–134

    Article  PubMed  Google Scholar 

  20. Laskowski R (1995) Surfnet: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph 13:323–330

    Article  PubMed  CAS  Google Scholar 

  21. Laurie A, Jackson R (2005) Q-sitefinder: an energy-based method for the prediction of protein-ligand binding sites. Bioinformatics 21:1908–1916

    Article  PubMed  CAS  Google Scholar 

  22. Binkowski A, Adamian L, Liang J (2003) Inferrring functional relationship of proteins from local sequence and spatial surface patterns. J Mol Biol 332:505–526

    Article  PubMed  CAS  Google Scholar 

  23. Binkowski A, Joachimiak A, Liang J (2005) Protein surface analysis for function annotation in high-throughput structural genomics pipeline. Protein Sci 14:2972–2981

    Article  PubMed  CAS  Google Scholar 

  24. Tseng Y, Liang J (2007) Predicting enzyme functional surfaces and locating key residues automatically from structures. Ann Biomed Eng 35(6):1037–1042

    Article  PubMed  Google Scholar 

  25. Tseng Y, Dundas J, Liang J (2009) Predicting protein function and binding profiles via matching of local evolutionary and geometric surface patterns. J Mol Biol 387:451–464

    Article  PubMed  CAS  Google Scholar 

  26. Levitt D, Banaszak J (1992) Pocket: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. J Mol Graph 10:229–234

    Article  PubMed  CAS  Google Scholar 

  27. Hendlich M, Rippmann F, Barnickel G (1997) Ligsite: automatic and efficient detection of potential small molecule-binding sites in proteins. J Mol Graph Model 15:359–363

    Article  PubMed  CAS  Google Scholar 

  28. Huang B, Schroeder M (2006) Ligsitecsc: predicting ligand binding sites using the connolly surface and degree of conservation. BMC Struct Biol 6:19

    Article  PubMed  Google Scholar 

  29. Liang J, Edelsbrunner H, Woodward C (1995) Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design. Protein Sci 7:1884–1897

    Article  Google Scholar 

  30. Brady G, Stouten P (2000) Fast prediction and visualization of protein binding pockets with pass. J Comput Aid Mol Des 14:383–401

    Article  CAS  Google Scholar 

  31. Weisel M, Proschak E, Schneider G (2007) Pocketpicker: analysis of ligand binding-sites with shape descriptors. Chem Cent J 1:7

    Article  PubMed  Google Scholar 

  32. Le Guilloux V, Schmidtke P, Tuffery P (2009) Fpocket: an open source platform for ligand pocket detection. BMC Bioinform 10:168

    Article  Google Scholar 

  33. Kinoshita K, Nakamura H (2009) Identification of the ligand binding sites on the molecular surface of proteins. Protein Sci 14:711–718

    Article  Google Scholar 

  34. Loewenstein Y, Raimondo D, Redfern O, Watson J, Frishman D, Linial M, Orengo C, Thornton J, Tramontano A (2009) Protein function annotation by homology-based inference. Genome Biol 10:207

    Article  PubMed  Google Scholar 

  35. uncker A, Jensen L, Pierleoni A, Bernsel A, Tress M, Bork P, Heijne G, Valencia A, Ouzounis C, Casadio R, Brunak S (2009) Sequence-based feature prediction and annotation of proteins. Genome Biol 10:206

    Article  PubMed  Google Scholar 

  36. Lee D, Redfern O, Orengo C (2007) Predicting protein function from sequence and structure. Nature 8:995–1005

    CAS  Google Scholar 

  37. Russell R, Sasieni P, Sternberg J (1998) Supersites within superfolds. Binding site similarity in absence of homology. J Mol Biol 282:903–918

    Article  PubMed  CAS  Google Scholar 

  38. Todd A, Orengo C, Thornton J (2001) Evolution of function in protein superfamilies from a structural perspective. J Mol Biol 307:1113–1143

    Article  PubMed  CAS  Google Scholar 

  39. Chen B, Honig B (2010) Vasp: a volumetric analysis of surface properties yields insights into protein-ligand binding specificity. PLoS Comput Biol 6:1–11

    Google Scholar 

  40. Chiang R, Sali A, Babbitt P (2008) Evolutionarily conserved substrate substructures for automated annotation of enzyme superfamilies. PLoS Comput Biol 4:1–11

    Article  Google Scholar 

  41. Tseng Y, Li W (2009) Identification of protein functional surfaces by the concept of a split pocket. Proteins 76:959–976

    Article  PubMed  CAS  Google Scholar 

  42. Liang J, Tseng Y, Dundas J, Binkowski A, Joachimiak A, Ouyang Z, Adamian L (2008) Predicting and characterizing protein functions through matching geometric and evolutionary patterns of binding surfaces. Adv Protein Chem 75:107–141

    CAS  Google Scholar 

  43. Dundas J, Adamian L, Liang J (2011) Structural signatures of enzyme binding pockets from order-independent surface alignment: a study of metalloendopeptidase and nad binding proteins. J Mol Biol 406:713–729

    Article  PubMed  CAS  Google Scholar 

  44. Sali A, Blundell T (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234:779–815

    Article  PubMed  CAS  Google Scholar 

  45. Rost B (1999) Twilight zone of protein sequence alignments. Protein Eng 12:85–94

    Article  PubMed  CAS  Google Scholar 

  46. Marti-Renom M, Stuart A, Fiser A, Sanchez R, Melo F, Sali A (2000) Comparative protein structure modeling of genes and genomes. Ann Rev Biophys Biomol Struct 29:291–325

    Article  CAS  Google Scholar 

  47. Eramian D, Eswar N, Shen M, Sali A (2008) How well can the accuracy of comparative protein structure models be predicted?. Protein Sci 17:1881–1893

    Article  PubMed  CAS  Google Scholar 

  48. Baker D, Sali A (2001) Protein structure prediction and structural genomics. Science 294(5540):93–96

    Article  PubMed  CAS  Google Scholar 

  49. Fiser A (2009) Comparative protein structure modelling. Springer, Berlin, vol 3, pp 57–90

  50. Berman H, Henrick K, Nakamura H (2003) Announcing the worldwide protein data bank. Nat Struct Biol 10:980–980

    Article  PubMed  CAS  Google Scholar 

  51. Berman H, Henrick K, Nakamura H, Markley J (2006) The worldwide protein data bank(wwpdb): ensuring a single, uniform archive of pdb data. Nucleic Acids Res 35:D301–D303

    Article  PubMed  Google Scholar 

  52. Kleywegt G, Jones A (1997) Model building and refinement practice. Methods Enzymol 277:208–230

    Article  PubMed  CAS  Google Scholar 

  53. Smith T, Waterman M (2006) Comparison of biosequences. Adv Appl Math 2:482–489

    Article  Google Scholar 

  54. Eramian D, Marti-Renom M, Webb B, Madhusudhan M, Eswar N, Shen M, Pieper U, Sali A (2007) Comparative protein structure modeling with modeller. Curr Protoc Protein Sci 50:2.9.1–2.9.31

    Google Scholar 

  55. Li M, Wang B (2007) Homology modeling and examination of the effect of the d92e mutation on the h5n1 nonstructural protein ns1 effector domain. J Mol Model 13:1237–1244

    Article  PubMed  CAS  Google Scholar 

  56. Zheng Z, Zuo Z, Liu Z, Tsai K, Liu A, Zou GL (2005) Construction of a 3d model of nattokinase, a novel fibrinolytic enzyme from bacillus natto a novel nucleophilic catalytic mechanism for nattokinase. J Mol Graph Model 23:373–380

    Article  PubMed  CAS  Google Scholar 

  57. Kiss R, Kovari Z, Keseru G (2004) Homology modelling and binding site mapping of the human histamine h1 receptor. Eur J Med Chem 39:959–967

    Article  PubMed  CAS  Google Scholar 

  58. Gabdoulline R, Stein M, Wade R (2007) Apipsa: relating enzymatic kinetic parameters and interaction fields. BMC Bioinform 8:373–388

    Article  Google Scholar 

  59. Bateman A, Finn R, Sims P, Wiedmer T, Biegert A, Soding J (2009) Phospholipid scramblases and tubby-like proteins belong to a new superfamily of membrane tethered transcription factors. Bioinformatics 25:159–162

    Article  PubMed  CAS  Google Scholar 

  60. Whalen K, Starczak V, Nelson D, Goldstone J, Hahn M (2010) Cytochrome p450 diversity and induction by gorgonian allelochemicals in the marine gastropod cyphoma gibbosum. BMC Bioinform 10:24–38

    CAS  Google Scholar 

  61. Dundas J, Ouyang Z, Tseng J, Binkowski A, Turpaz Y, Liang J (2006) CASTp: computed atlas of surface topography of proteins with structural and topographical mapping of functionally annotated residues. Nucleic Acids Res 34:W116–W118

    Article  PubMed  CAS  Google Scholar 

  62. Umeyama S (1991) Least-squares estimation of transformation parameters between two point patterns. IEEE Trans 13:376–380

    Google Scholar 

  63. Tian W, Skolnick J (2003) How well is enzyme function conserved as a function of pairwise sequence identity? J Mol Biol 333:863–882

    Article  PubMed  CAS  Google Scholar 

  64. Wilk M, Gnanadesikan R (1968) Probability plotting methods for the analysis of data. Biometrika 55:1–17

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from NIH (GM079804, GM081682, GM086145, GM055876-13) and NSF (DMS-0800257).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jieling Zhao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, J., Dundas, J., Kachalo, S. et al. Accuracy of functional surfaces on comparatively modeled protein structures. J Struct Funct Genomics 12, 97–107 (2011). https://doi.org/10.1007/s10969-011-9109-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10969-011-9109-z

Keywords

Navigation