Skip to main content
Log in

UV–Vis spectroscopy with chemometric data treatment: an option for on-line control in nuclear industry

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Chemometrics can be very useful for the classical field of UV–Vis determination of metals in aqueous solutions. A conventional approach consisting of using selective bands in a univariate mode is often not applicable to the real-world samples from e.g. hydrometallurgical processes, because of overlapping signals, light scattering on foreign particles, gas bubble formation, etc. And this is where chemometrics can do a good job. This paper overviews certain contributions to the field of multivariate data processing of UV–Vis spectra for seemingly simple case of metal detection in aqueous solutions. Special attention is given to applications in nuclear technology field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Wold S (1972) Spline functions, a new tool in data-analysis. Kem Tidskr 3:34–37

    Google Scholar 

  2. Wold S, Sjöström M (1998) Chemometrics, present and future success. Chemom Intel Lab Syst 44:3–14

    Article  CAS  Google Scholar 

  3. Wetzel D (1983) Near-infrared reflectance analysis. Anal Chem 55:1165A–1176A

    Article  CAS  Google Scholar 

  4. Blanco M, Villarroya I (2002) NIR spectroscopy: a rapid-response analytical tool. Trends Anal Chem 21:240–250

    Article  CAS  Google Scholar 

  5. Roggo Y, Chalus P, Maurer L, Lema-Martinez C, Edmond A, Jent N (2007) A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies. J Pharmaceut Biomed 44:683–700

    Article  CAS  Google Scholar 

  6. Jimaré Benito M, Bosch Ojeda C, Sanchez Rojas F (2008) Process analytical chemistry: applications of near infrared spectrometry in environmental and food analysis—an overview. Appl Spectrosc Rev 43:452–484

    Article  Google Scholar 

  7. Andrade-Garda JM (ed) (2009) Basic chemometric techniques in atomic spectroscopy. RSC Publishing, London

    Google Scholar 

  8. Henry R, Koller D, Liezers M, Farmer OT III, Barinaga C, Koppenaal D, Wacker J (2001) New advances in inductively coupled plasma–mass spectrometry (ICP-MS) for routine measurements in the nuclear industry. J Radioanal Nucl Chem 249:103–108

    Article  CAS  Google Scholar 

  9. Pathak AK, Kumar R, Singh VK, Agrawal R, Rai S, Kumar Rai A (2012) Basic chemometric techniques in atomic spectroscopy. Appl Spectrosc Rev 47:14–40

    Article  CAS  Google Scholar 

  10. Downey G (1998) Food and food ingredient authentication by mid-infrared spectroscopy and chemometrics (review). Trends Anal Chem 17:418–424

    Article  CAS  Google Scholar 

  11. Łobiński R, Marczenko Z (1992) Recent advances in ultraviolet-visible spectrophotometry. Crit Rev Anal Chem 23:55–111

    Article  Google Scholar 

  12. Otto M, Wegscheider W (1985) Spectrophotometric multicomponent analysis applied to trace metal determinations. Anal Chem 57:63–69

    Article  CAS  Google Scholar 

  13. Bebee K, Kowalski B (1987) An introduction to multivariate calibration and analysis. Anal Chem 59:1007

    Article  Google Scholar 

  14. Thomas E, Haaland D (1990) Comparison of multivariate calibration methods for quantitative spectral analysis. Anal Chem 62:1091–1099

    Article  CAS  Google Scholar 

  15. Vitouchová M, Jančář L, Sommer L (1992) Interaction of iron(II) and the simultaneous spectrophotometric determination of Fe, Cu, Zn, Co and Ni with 2-(5-bromo-2-pyridylazo)-5-diethylaminophenol. Fresenius J Anal Chem 343:274–279

    Article  Google Scholar 

  16. Rodriguez A, de Torres A, Pavon J, Ojeda C (1993) Simultaneous spectrophotometric determination of cadmium, copper and zinc. Talanta 40:1861–1866

    Article  CAS  Google Scholar 

  17. Rodriguez A, de Torres A, Pavon J, Ojeda C (1998) Simultaneous determination of iron, cobalt, nickel and copper by UV–visible spectrophotometry with multivariate calibration. Talanta 47:463–470

    Article  CAS  Google Scholar 

  18. Iida Y (1987) Repetitive spectral subtraction method for the spectrophotometric determination of rare earth elements. Fresenius J Anal Chem 328:547–552

    Article  CAS  Google Scholar 

  19. Carey W, Wangen L (1989) Spectrophotometric method for the analysis of plutonium and nitric acid using partial least-squares regression. Anal Chem 61:1667–1669

    Article  CAS  Google Scholar 

  20. Carey W, Wangen L (1991) Determining chemical characteristics of plutonium solutions using visible spectrometry and multivariate chemometric methods. Chemom Intell Lab Syst 10:245–257

    Article  CAS  Google Scholar 

  21. Peralta-Zamora P, Cornejo-Ponce L, Nagata N, Poppi R (1997) Chemometric alternatives for resolution of classical analytical problems. Spectrophotometric determination of lanthanide mixtures. Talanta 44:1815–1822

    Article  CAS  Google Scholar 

  22. Meinrath G (1998) Chemometric analysis: uranium(VI) hydrolysis by UV–Vis spectroscopy. J Alloy Compounds 277:777–781

    Article  Google Scholar 

  23. Meinrath G (1998) Direct spectroscopic speciation of schoepite-aqueous phase equilibria. J Radioanal Nucl Chem 232:179–188

    Article  CAS  Google Scholar 

  24. Meinrath G, Lis S, But S, Elbanowski M (2001) Chemometric and statistical analysis of polyoxometalate interaction with lanthanide(III) ions. Talanta 55:371–386

    Article  CAS  Google Scholar 

  25. Meinrath G, Lis S, Elbanowski M (2004) Spectroscopy, chemometrics and metrology—three aspects of lanthanide chemistry. J Alloy Compounds 380:413–417

    Article  CAS  Google Scholar 

  26. Meinrath G, Lis S, Böhme U (2006) Quantitative evaluation of Ln(III) pyridine N-oxide carboxylic acid spectra under chemometric and metrological aspects. J Alloy Compounds 412:962–969

    Article  Google Scholar 

  27. Kaczmarek M, Meinrath G, Lis S, Kufelnicki A (2008) The interaction of arsenazo III with Nd(III)—a chemometric and metrological analysis. J Solut Chem 37:933–946

    Article  CAS  Google Scholar 

  28. Lis S, Meinrath G, Glatty Z, Kubicki M (2010) Spectroscopic speciation and structural characterisation of uranyl(VI) interaction with pyridine carboxylic acid N-oxide derivatives. Inorg Chim Acta 363:3847–3855

    Article  CAS  Google Scholar 

  29. Ni Y, Wu Y (1999) Spectrophotometric determination of europium, terbium and yttrium in a perchloric acid solution by the Kalman filter approach. Anal Sci 15:1123–1127

    Article  CAS  Google Scholar 

  30. Haswell S, Walmsley A (1999) Chemometrics: the issues of measurement and modelling. Anal Chim Acta 400:399–412

    Article  CAS  Google Scholar 

  31. Wang L, Wang X, Wang Y (2013) Structure of a piperidine-modified calix[4]arene derivative and spectral resolution of its interaction with rare earth metals with chemometric methods. Spectrochim Acta A 105:62–66

    Article  Google Scholar 

  32. Rodionova O, Tikhomirova T, Pomerantsev A (2015) Spectrophotometric determination of Rare Earth Elements in aqueous nitric acid solutions for process control. Anal Chim Acta 869:59–67

    Article  CAS  Google Scholar 

  33. Baumgärtner F, Ertel D (1980) The modern PUREX process and its analytical requirements. J Radioanal Chem 58(1–2):11–28

    Article  Google Scholar 

  34. Ache H (1992) Analytical chemistry in nuclear technology. Fresenius J Anal Chem 343:852–862

    Article  CAS  Google Scholar 

  35. Pomerantsev A, Rodionova O (2012) Process analytical technology: a critical view of the chemometricians. J Chemom 26:299–310

    Article  CAS  Google Scholar 

  36. Richter S, Goldberg S (2003) Improved techniques for high accuracy isotope ratio measurements of nuclear materials using thermal ionization mass spectrometry. Int J Mass Spectrom 229:181–197

    Article  CAS  Google Scholar 

  37. Chartier F, Aubert M, Pilier M (1999) Determination of Am and Cm in spent nuclear fuels by isotope dilution inductively coupled plasma mass spectrometry and isotope dilution thermal ionization mass spectrometry after separation by high-performance liquid chromatography. Fresenius J Anal Chem 364:320–327

    Article  CAS  Google Scholar 

  38. Betti M (1997) Use of ion chromatography for the determination of fission products and actinides in nuclear applications. J Chromatogr A 789:369–379

    Article  CAS  Google Scholar 

  39. Benedict M, Pigford T, Levi H (1981) Nuclear chemical engineering, 2nd edn. McGraw-Hill, New York, pp 457–564

    Google Scholar 

  40. Mathur J, Murali M, Nash K (2001) Actinide partitioning—a review. Solv Extr Ion Exch 19:357–390

    Article  CAS  Google Scholar 

  41. Tachimori S, Morita Y (2009) Overview of solvent extraction chemistry for reprocessing. Ion exchange & solvent extraction: a series of advances, vol 19. CRC Press, Boca Raton, pp 1–63

    Book  Google Scholar 

  42. Bostick D (1978) The simultaneous analysis of uranium and nitrate. ORNL/TM-6292, Oak Ridge National Laboratory Report. http://www.osti.gov/scitech/biblio/5080075, Accessed 25 Jan 2017

  43. Rodden C (1941) Spectrophotometric determination of praseodymium, neodymium, and samarium. J Res Nat Bur Stand 26:557–570

    Article  CAS  Google Scholar 

  44. Parus J, Kierzek J, Zoltowski T (1977) Online control of nuclear fuel reprocessing. Nukleonika 22:759–776

    CAS  Google Scholar 

  45. Madic C, Hobart D, Begun G (1983) Raman spectrometric studies of actinide(V) and actinide(VI) complexes in aqueous sodium-carbonate solution and of solid sodium actinide(V) carbonate compounds. Inorg Chem 22:1494–1503

    Article  CAS  Google Scholar 

  46. Madic C, Begun G, Hobart D, Hahn R (1984) Raman spectroscopy of neptunyl and plutonyl ions in aqueous solution: neptunium(VI) and plutonium(VI) and disproportionation of plutonium(V). Inorg Chem 23:1914–1921

    Article  CAS  Google Scholar 

  47. Colston B, Choppin G (2001) Evaluating the performance of a stopped-flow near-infrared spectrophotometer for studying fast kinetics of actinide reactions. J Radioanal Nucl Chem 251:21–26

    Google Scholar 

  48. Janssens-Maenhout G, Nucifora S (2007) Feasibility study of a microsystem to analyse radioactive solutions. Nucl Eng Design 237:1209–1219

    Article  CAS  Google Scholar 

  49. Warburton J, Smith N, Czerwinski K (2010) Method for online process monitoring for use in solvent extraction and actinide separations. Sep Scie Technol 45:1763–1768

    Article  CAS  Google Scholar 

  50. Lascola R, Livingston R, Sanders M, McCarty J, Dunning J (2002) Online spectrophotometric measurements of uranium and nitrate concentrations of process solutions for Savannah River Site’s H-Canyon. J Process Anal Chem 7:14–20

    CAS  Google Scholar 

  51. Smith N, Cerefice G, Czerwinski K (2013) Fluorescence and absorbance spectroscopy of the uranyl ion in nitric acid for process monitoring applications. J Radioanal Nucl Chem 295:1553–1560

    Article  CAS  Google Scholar 

  52. Fujii T, Egusa S, Uehara A, Yamana H, Morita Y (2013) Quantitative analysis of neodymium, uranium, and palladium in nitric acid solution by reflection absorption spectrophotometry. J Radioanal Nucl Chem 295:2059–2062

    Article  CAS  Google Scholar 

  53. Ganesh S, Velavendan P, Pandey N, Kamachi Mudali U, Natarajan R (2013) Direct spectrophotometric determination of ruthenium in aqueous streams of nuclear reprocessing. Radioanal Nucl Chem 295:2091–2094

    Article  CAS  Google Scholar 

  54. Fukasawa T, Kawamura F (1991) Photochemical reactions of neptunium in nitric acid solution containing photocatalyst. J Nucl Scie Technol 28:27–32

    Article  CAS  Google Scholar 

  55. Precek M, Paulenova A, Mincher B (2012) Reduction of Np(VI) in irradiated solutions of nitric acid. Proced Chem 7:51–58

    Article  CAS  Google Scholar 

  56. Guillaume B, Hobart D, Bourges J (1981) Cation-cation complexes of pentavalent actinides 2. Spectrophotometric study of complexes of Am(V) with U022+ and Np022+ in aqueous perchlorate solution. J Inorg Nucl Chem 43:3295–3299

    Article  CAS  Google Scholar 

  57. Boisde G, Perez J (1984) Remote Spectrometry With Optical Fibers, Ten Years Of Development And Prospects For On-Line Control. Proceedings SPIE 0514, 2nd international conference on optical fiber sensors: OFS’84, 227 (November 21, 1984); http://dx.doi.org/10.1117/12.945088, Accessed 25 Jan 2017

  58. Moser D, Klatt L (1986) Application of in-line photometer to solvent extraction process control, Control and instrumentation http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/18/050/18050429.pdf, Accessed 25 Jan 2017

  59. Van Hare D, O’Rourke P, Prather W (1988) Online fiber optic spectrophotometry (No. DP-MS-88-186; CONF-881143-1) Savannah River National Laboratory Report, Aiken, USA, http://www.osti.gov/scitech/biblio/6710161, Accessed 25 Jan 2017

  60. O’Rourke P, Van Hare D, Prather W (1992) On-line process control monitoring system. US Patent 5131746

  61. Biirck J (1991) Spectrophotometric determination of uranium and nitric acid by applying partial least squares regression to uranium(VI) absorption spectra. Anal Chim Acta 254:159–165

    Article  Google Scholar 

  62. Bryan S, Levitskaia T (2007) Monitoring and control of Purex radiochemical processes. Proceedings of international conference GLOBAL-2007, Boise, Idaho. http://toc.proceedings.com/02031webtoc.pdf, Accessed 25 Jan 2017

  63. Bryan S, Levitskaia T, Casella A, Peterson J, Johnsen A, Lines A, Thomas E (2011) In: Nash KL, Lumetta GJ (eds) Advanced separation techniques for nuclear fuel reprocessing and radioactive waste treatment. Woodhead Publishing, Sawston

    Google Scholar 

  64. Kirsanov D, Babain V, Agafonova-Moroz M, Lumpov A, Legin A (2012) Combination of optical spectroscopy and chemometric techniques–a possible way for on-line monitoring of spent nuclear fuel (SNF) reprocessing. Radiochim Acta 100:185–188

    Article  CAS  Google Scholar 

  65. Kirsanov D, Babain V, Agafonova-Moroz M, Lumpov A, Legin A (2013) Approach to on-line monitoring of PUREX process using chemometric processing of the optical spectral data. Radiochim Acta 101:149–154

    Article  CAS  Google Scholar 

  66. Li L, Zhang H, Ye G (2013) Simultaneous spectrophotometric determination of uranium, nitric acid and nitrous acid by least-squares method in PUREX process. J Radioanal Nucl Chem 295:325–330

    Article  CAS  Google Scholar 

  67. Bryan S, Levitskaia T, Johnsen A, Orton C, Peterson J (2011) Spectroscopic monitoring of spent nuclear fuel reprocessing streams: an evaluation of spent fuel solutions via Raman, visible, and near-infrared spectroscopy. Radiochim Acta 99:563–572

    Article  CAS  Google Scholar 

  68. Nee K, Bryan S, Levitskaia T, Nilsson M (2013) Spectroscopic and physicochemical measurements for on-line monitoring of used nuclear fuel separation processes. Proceedings of international conference GLOBAL-2013, Salt Lake City, Utah, September 29–October 3, 2013, pp. 931–935, http://toc.proceedings.com/21109webtoc.pdf, Accessed 25 Jan 2017

  69. Casella A, Levitskaia T, Peterson J, Bryan S (2013) Water O–H stretching Raman signature for strong acid monitoring via multivariate analysis. Anal Chem 85:4120–4128

    Article  CAS  Google Scholar 

  70. Casella A, Ahlers L, Campbell E, Levitskaia T, Peterson J, Smith F, Bryan S (2015) Development of online spectroscopic pH monitoring for nuclear fuel reprocessing plants: weak acid schemes. Anal Chem 87:5139–5147

    Article  CAS  Google Scholar 

  71. Bryan S, Levitskaia T, Casella A, Peterson J (2013) Spectroscopic online monitoring for process control and safeguarding of radiochemical fuel reprocessing streams. In the proceedings of WM2013 conference, Phoenix, Arizona USA, February 24 – 28, 2013, http://www.wmsym.org/archives/2013/papers/13553.pdf, Accessed 25 Jan 2017

  72. Debus B, Kirsanov D, Ruckebusch C, Agafonova-Moroz M, Babain V, Lumpov A, Legin A (2015) Restoring important process information from complex optical spectra with MCR-ALS: Case study of actinides reduction in spent nuclear fuel reprocessing. Chemom Intel Lab Syst 146:241–249

    Article  CAS  Google Scholar 

  73. Rodionova O, Pomerantsev A (2016) Non-linear multivariate curve resolution applied to the spectrophotometric determination of cerium(III) in aqueous nitric acid solutions for process control. Anal Methods 8:435–440

    Article  CAS  Google Scholar 

  74. Manne R (1995) On the resolution problem in hyphenated chromatography. Chemom Intel Lab Syst 27:89–94

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was partially financially supported by Government of Russian Federation (Grant 074-U01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitry Kirsanov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirsanov, D., Rudnitskaya, A., Legin, A. et al. UV–Vis spectroscopy with chemometric data treatment: an option for on-line control in nuclear industry. J Radioanal Nucl Chem 312, 461–470 (2017). https://doi.org/10.1007/s10967-017-5252-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5252-8

Keywords

Navigation