Skip to main content
Log in

Investigating the influence of F on U4+ in molten LiCl–KCl–UF4 system and electro-deposition of U

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical behaviors of U4+ in LiCl–KCl–UF4 eutectic and deposition of U metal were investigated. It was found that the presence of F has influence on the diffusion of U3+ and U4+ as comparing to data obtained in pure chloride molten salts. Electrochemical deposition of U was carried out by using pulse current electrolysis. Characterization results indicate that U metal was obtained at the cathode, implying U metal can be directly deposited from LiCl–KCl–UF4 eutectic in this case and the extractive ratio is calculated to be 98%. Our results demonstrate feasible separation of U from LiCl–KCl–UF4 molten salt by electrochemical method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Laidler JJ (1993) Pyrochemical recovery of actinides; ANL-CMT-CP-78937

  2. Li X, Sofi T, Johnson TA, et al (1999) Experimental observations on electrorefining spent nuclear fuel in molten LiC1–KCl/liquid cadmium system, INL-NT-CP-98226

  3. Laidler JJ, Miller WE, Johnson TR, et al (1992) IFR fuel cycle-pyroprocess development, ANL-CMT-CP-77849

  4. Laidler JJ (1994) Pyrochemical processing of DOE spent nuclear fuel; ANL-CMT-CP-84355

  5. Eddie CG, William EM (1994) Electrorefining “N” reactor fuel’ANL-CMT-CP-84354

  6. Kumar S, Todd A, Mark A et al (2012) Thermal properties of LiCl–KCl molten salt for nuclear waste separation; University of Wisconsin, Project No. 09-780

  7. Kuznetsov SA, Gaune-Escard M (2009) Electrochemical transient techniques for study of the electrochemistry and thermodynamics of nuclear materials in molten salts. J Nucl Mater 389:108–114. doi:10.1016/j.jnucmat.2009.01.015

    Article  CAS  Google Scholar 

  8. Sakamurar Y, Hijikata T, Kinoshita K et al (1998) Measurement of standard potentials of actinides (U, Np, Pu, Am) in LiCl–KCl eutectic salt and separation of actinides from rare earths by electrorefining. J Alloy Compd 271–273:592–596. doi:10.1016/S0925-8388(98)00166-2

    Article  Google Scholar 

  9. Shirai O, Iwai T, Suzuki Y et al (1998) Electrochemical behavior of actinide ions in LiCI–KCl eutectic melts. J Alloy Compd 271–273:685–688. doi:10.1016/S0925-8388(98)00187-x

    Article  Google Scholar 

  10. Gao FX, Wang CS, Liu LS et al (2009) Electrode processes of uranium ions and electro deposition of uranium in molten LiCl–KCl. J Radioanal Nucl Chem 280:207–218. doi:10.1007/s10967-008-7417-y

    Article  CAS  Google Scholar 

  11. Wang XB, Huang W, Jiang F et al (2016) Electrochemical behavior of Th(IV) and its electrodeposition from ThF4–LiCl–KCl melt. Electrochim Acta 196:286–293. doi:10.1016/j.electacta.2016.02.184

    Article  CAS  Google Scholar 

  12. Jenkins HW, Mamantov G, Manning DL (1968) E.M.F. measurements on the nickel-nickel(II) couple in molten fluorides. J Electroanal Chem 19:385–389. doi:10.1016/S0022-0728(68)80101-9

    Article  CAS  Google Scholar 

  13. Gao P, Jin XB, Wang D (2005) A quartz sealed Ag/AgCl reference electrode for CaCl2 based molten salts. J Electroanal Chem 579:321–328. doi:10.1016/j.jelechem.2005.03.004

    Article  CAS  Google Scholar 

  14. Heinze, J. (1984) Cyclic voltammetry-”electrochemical spectroscopy”. Angew Chem Int Edition, 23: 831–847. doi: 10.1002/anie.198408313

  15. Bard AJ (1980) Electrochemical methods fundamentals and applications, 2nd edn. New York, Wiley

    Google Scholar 

  16. Caravaca C, de Cordoba G, Tomas MJ et al (2007) Electrochemical behavior of gadolinium ion in molten LiCl–KCl eutectic. J Nucl Mater 360:25–31. doi:10.1016/j.jnucmat.2006.08.009

    Article  CAS  Google Scholar 

  17. Yang YS, Zhang ML (2014) Selective extraction of gadolinium from Sm2O3 and Gd2O3 mixtures in a single step assisted by MgCl2 in LiCl–KCl melts. J Solid State Electrochem 18:843–850. doi:10.1007/s10008-013-2333-7

    Article  Google Scholar 

  18. Lee YJ, Lee TH, Nersisyan HH et al (2015) Characterization of Ta-W alloy film deposition by molten salt Multi-Anode Reactive alloy Coating (MARC) method. Int J Refract Metals Hard Mater 53:23–31. doi:10.1016/j.ijrmhm.2015.04.022

    Article  CAS  Google Scholar 

  19. Tetsuya T, Yuichi I, Takashi A et al (2012) Al-W alloy deposition from lewis acidic room-temperature chloroaluminate ionic liquid. ECS Trans 50:239–250. doi:10.1149/05011.0239ecst

    Google Scholar 

  20. Shannon RD (1976) Revised effective ionic radius and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr Sect A 32:751–767. doi:10.1107/S0567739476001551

    Article  Google Scholar 

  21. Smirnov MV (1973) Electrode potentials in molten chlorides. Nauka, Moscow

    Google Scholar 

  22. Patrick M, David B, Rudy K et al (2005) Electrochemistry of uranium in molten LiCl–KCl eutectic. J Electrochem Soc 152:A1109–A1115. doi:10.1149/1.1901083

    Article  Google Scholar 

Download references

Acknowledegments

This work was supported by “Strategic Priority Research Program” Chinese Academy of Sciences (Grant No. XDA02030000)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dewu Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, T., Huang, W., Zheng, H. et al. Investigating the influence of F on U4+ in molten LiCl–KCl–UF4 system and electro-deposition of U. J Radioanal Nucl Chem 312, 479–485 (2017). https://doi.org/10.1007/s10967-017-5242-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5242-x

Keywords

Navigation