Skip to main content
Log in

Isotopes and hydrochemistry of Daihai Lake recharging sources, Northern China

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Daihai Lake has faced severe shrinkage in recent years due to over-exploitation. Stable isotopes (D and 18O) and hydrochemistry are employed to investigate the source of lake water to better understand its recharge dynamics. Results show that, in additional to local rainfall, groundwater is also an important water supply to the lake and accounts for a greater proportion. The groundwater is not recharged by local rainfall, but originates from other sources with significantly depleted isotope values. Combined with springs and artesian wells in the basin, it is consistent with the recent discover of external groundwater recharging in Northern China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen J, Ji B, Liu Z et al (2013) Isotopic and hydro-chemical evidence on the origin of groundwater through deep-circulation ways in Lake Daihai region, Inner Mongolia plateau. J Lake Sci 25:521–530

    Article  CAS  Google Scholar 

  2. Zhang J, Lai Z, Jia Y (2012) Luminescence chronology for late Quaternary lake levels of enclosed Huangqihai lake in East Asian monsoon marginal area in northern China. Quat Geochronol 10:123–128

    Article  Google Scholar 

  3. Zhang J, Tsukamoto S, Jia Y et al (2016) Lake level reconstruction of Huangqihai Lake in northern China since MIS 3 based on pulsed optically stimulated luminescence dating. J Quat Sci 31(3):225–238

    Article  CAS  Google Scholar 

  4. Sun Q, Zhou J, Shen J et al (2006) Environmental characteristics of Mid-Holocene recorded by lacustrine sediments from Lake Daihai, north environment sensitive zone, China. Sci China Ser D 49(9):968–981

    Article  CAS  Google Scholar 

  5. Zhang F, Jin Z, Li F et al (2013) The dominance of loess weathering on water and sediment chemistry within the Daihai Lake catchment, northeastern Chinese Loess Plateau. Appl Geochem 35:51–63

    Article  Google Scholar 

  6. Jin Z, Li F, Cao J et al (2006) Geochemistry of Daihai Lake sediments, Inner Mongolia, north China: implications for provenance, sedimentary sorting, and catchment weathering. Geomorphology 80(3):147–163

    Article  Google Scholar 

  7. Sun Q, Wang S, Zhou J et al (2009) Lake surface fluctuations since the late glaciation at Lake Daihai, North central China: a direct indicator of hydrological process response to East Asian monsoon climate. Quatern Int 194(1):45–54

    Article  Google Scholar 

  8. Xu Q, Li Y, Yang X et al (2005) Source and distribution of pollen in the surface sediment of Daihai Lake, Inner Mongolia. Quat Int 136(1):33–45

    Article  Google Scholar 

  9. Wang X, Cui L, Xiao J et al (2013) Stable carbon isotope of black carbon in lake sediments as an indicator of terrestrial environmental changes: an evaluation on paleorecord from Daihai Lake, Inner Mongolia, China. Chem Geol 347:123–134

    Article  CAS  Google Scholar 

  10. Han Y, Jin Z, Cao J et al (2007) Atmospheric Cu and Pb deposition and transport in lake sediments in a remote mountain area, Northern China. Water Air Soil Pollut 179(1–4):167–181

    Article  CAS  Google Scholar 

  11. Jiang Z, Liu B, Liu H et al (2014) Trace metals in Daihai Lake sediments, Inner Mongolia, China. Environ Earth sci 71(1):255–266

    Article  CAS  Google Scholar 

  12. Feng X, Wang Y, Wang Y et al (1994) Survey and assessment of water resources in Daihai Lake Basin with remote sensing information. Hydrology 1994:1–5

    Google Scholar 

  13. Carretero SC, Dapeña C, Kruse EE (2013) Hydrogeochemical and isotopic characterisation of groundwater in a sand-dune phreatic aquifer on the northeastern coast of the province of Bbuenos Aires, Argentina. Isot Environ Health Stud 49(3):399–419

    Article  CAS  Google Scholar 

  14. Murgulet D, Murgulet V, Spalt N et al (2016) Impact of hydrological alterations on river-groundwater exchange and water quality in a semi-arid area: Nueces River, Texas. Sci Total Environ 572(1):595–607

    Article  CAS  Google Scholar 

  15. Osati K, Koeniger P, Salajegheh A et al (2014) Spatiotemporal patterns of stable isotopes and hydrochemistry in springs and river flow of the upper Karkheh River Basin, Iran. Isot Environ Health Stud 50(2):169–183

    Article  CAS  Google Scholar 

  16. Wand U, Hermichen WD, Brüggemann E (2011) Stable isotope and hydrogeochemical studies of Beaver Lake and Radok Lake, MacRobertson Land, East Aantarctica. Isot Environ Health Stud 47(4):407–414

    Article  CAS  Google Scholar 

  17. Liu F, Song X, Yang L et al (2015) Identifying the origin and geochemical evolution of groundwater using hydrochemistry and stable isotopes in the Subei Lake Basin, Ordos energy base, Northwestern China. Hydrol Earth Syst Sci 19(1):551–565

    Article  CAS  Google Scholar 

  18. Nativ R, Adar E, Dahan O et al (1995) Water recharge and solute transport through the vadose zone of fractured chalk under desert conditions. Water Resour Res 31(2):253–261

    Article  CAS  Google Scholar 

  19. Koeniger P, Gaj M, Beyer M et al (2016) Review on soil water isotope based groundwater recharge estimations. Hydrol Process 30(16):2817–2834

    Article  Google Scholar 

  20. Chen J, Liu X, Wang C et al (2012) Isotopic constraints on the origin of groundwater in the Ordos Basin of northern China. Environ Geol 66(2):505–517

    CAS  Google Scholar 

  21. Huang T, Pang Z, Edmunds WM (2013) Soil profile evolution following land-use change: implications for groundwater quantity and quality. Hydrol Process 27(8):1238–1252

    Article  Google Scholar 

  22. Xiao J, Xu Q, Nakamura T et al (2004) Holocene vegetation variation in the Daihai Lake region of north-central China: a direct indication of the Asian monsoon climatic history. Quat Sci Rev 23(14):1669–1679

    Article  Google Scholar 

  23. Hydrological Report (2010) Hydrological data of inland rivers and lakes, Bureau of Hydrology, Ministry of Water Resources, People’s Republic of China (In Chinese)

  24. Epstein S, Mayeda T (1953) Variation of 18O content of waters from natural sources. Geochim Geochim Cosmochim Acta 4(5):213–224

    Article  CAS  Google Scholar 

  25. Coleman ML, Shepherd TJ, Durban JJ et al (1982) Reduction of water with zinc for hydrogen isotope analysis. Anal Chem 54(6):993–995

    Article  CAS  Google Scholar 

  26. Hurbaji ARM, Phillips FM, Campbella AR et al (1995) Application of a numerical model for simulating water flow, isotope transport, and heat transfer in the unsaturated zone. J Hydrol 171(1):143–163

    Article  Google Scholar 

  27. Liu J, Song X, Sun X et al (2009) Isotopic composition of precipitation over Arid Northwestern China and its implications for the water vapor origin. J Geogr Sci 19(2):164–174

    Article  Google Scholar 

  28. IAEA/WMO. Global Network of Isotopes in Precipitation. The GNIP Database. http://www.iaea.org/water. Accessed 1 March 2016

  29. Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703

    Article  CAS  Google Scholar 

  30. Craig H (1961) Standard for reporting concentrations of deuterium and oxygen-18 in natural waters. Science 133(3467):1833–1834

    Article  CAS  Google Scholar 

  31. Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468

    Article  Google Scholar 

  32. Gibson JJ, Edwards TWD, Bursey GG et al (1993) Estimating evaporation using stable isotopes: quantitative results and sensitivity analysis for two catchments in northern Canada. Hydrol Res 24(2–3):79–94

    Google Scholar 

  33. Jin K, Rao W, Sun J et al (2015) Isotope characteristics and source of precipitation in the Ordos Desert Area. Yellow River 37(3):31–35 (In Chinese with English abstract)

    CAS  Google Scholar 

  34. Dun Y, Tang C, Shen Y (2014) Identifying interactions between river water and groundwater in the North China Plain using multiple tracers. Environ Earth Sci 72(1):99–110

    Article  Google Scholar 

  35. Asano Y, Uchida T, Ohte N (2002) Residence times and flow paths of water in steep unchannelled catchments, Tanakami, Japan. J Hydrol 261(1):173–192

    Article  Google Scholar 

  36. Huang D, Chen J, Zhan L et al (2016) Evaporation from sand and loess soils: an experimental approach. Transp Porous Med 113(3):639–651

    Article  CAS  Google Scholar 

  37. Ge J, Chen J, Ge L et al (2016) Isotopic and hydrochemical evidence of groundwater recharge in the Hopq desert, NW China. J Radioanal Nucl Chem 310(2):1–15

    Article  Google Scholar 

  38. Song X, Liu X, Xia J et al (2006) A study of interaction between surface water and groundwater using environmental isotope in Huaisha River basin. Sci China (Ser D) 49(12):1299–1310

    Article  CAS  Google Scholar 

  39. Yang Y, Shen Z, Weng D et al (2009) Oxygen and hydrogen isotopes of waters in the ordos basin, china: implications for recharge of groundwater in the north of cretaceous groundwater basin. Acta Geol Sin-Engl 83(1):103–113

    Article  CAS  Google Scholar 

  40. Yin L, Hou G, Su X et al (2011) Isotopes (δD and δ18O) in precipitation, groundwater and surface water in the ordos plateau, china: implications with respect to groundwater recharge and circulation. Hydrogeol J 19(2):429–443

    Article  CAS  Google Scholar 

  41. Yin L, Hu G, Huang J et al (2011) Groundwater-recharge estimation in the ordos plateau, china: comparison of methods. Hydrogeol J 19(8):1563–1575

    Article  Google Scholar 

  42. Zhan L, Chen J, Xu Y et al (2017) Allogenic water recharge of groundwater in the Erenhot wasteland of northern China. J Radioanal Nucl Chem. doi:10.1007/s10967-017-5175-4

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank the support of the National Natural Science Foundation of China (51578212), and the Postgraduate Research and Innovation Projects in Jiangsu Province (KYZZ_0141). We gratefully acknowledge the funding from the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiansheng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Chen, J., Xu, Y. et al. Isotopes and hydrochemistry of Daihai Lake recharging sources, Northern China. J Radioanal Nucl Chem 312, 615–629 (2017). https://doi.org/10.1007/s10967-017-5241-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5241-y

Keywords

Navigation