Skip to main content
Log in

Principles, methodologies, and applications of photon activation analysis: a review

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

This review describes the basic principles of photon activation analysis (PAA) and gives an extensive overview of its numerous applications. Uses of PAA for environmental, biological, geological, archeological, and forensic samples are reviewed. Both scientific and industrial applications of PAA are covered. Potential future uses of PAA are addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Baker CA (1967) Gamma-activation analysis. A review. Analyst 92:601. doi:10.1039/an9679200601

    Article  CAS  Google Scholar 

  2. Lutz GJ (1971) Photon activation analysis: a review. Anal Chem 43:93–103

    Article  CAS  Google Scholar 

  3. Starovoitova V, Segebade C (2016) High intensity photon sources for activation analysis. J Radioanal Nucl Chem 310(1):13–26. doi:10.1007/s10967-016-4899-x

    Article  CAS  Google Scholar 

  4. Segebade C, Weise H-P, Lutz G (1988) Photon activation analysis. W. de Gruyter, Berlin

    Google Scholar 

  5. Schmitt BF, Segebade C, Fusban H-U (1980) Waste incineration ash: a versatile environmental reference material. J Radioanal Chem 60:99–109. doi:10.1007/BF02518287

    Article  CAS  Google Scholar 

  6. Segebade C, Masumoto K, Springorum K et al (2007) Calibration material à la carte - synthetic multielement - calibration materials on polymer basis. Semin. Akt. und Gammaspektroskopie (SAAGAS 21)

  7. Segebade C, Maimaitimin M, Zaijing S (2013) The relevance of particle flux monitors in accelerator-based activation analysis. AIP Publishing, Melville, pp 667–671

    Google Scholar 

  8. Segebade C, Kuehl M, Schmitt BF, Neider R (1982) Some remarks on the state of photon activation analysis and the use of internal standards. J Radioanal Chem 72:665–696

    CAS  Google Scholar 

  9. Segebade C, Schmitt BF (1987) Analysis of high-purity material: a comparison of photon activation analysis with other instrumental methods. J Radioanal Nucl Chem Artic 113:61–76. doi:10.1007/BF02036048

    Article  CAS  Google Scholar 

  10. Carter GF, Caley ER, Carlson JH et al (1983) Comparison of analyses of eight Roman orichalcum coin fragments by seven methods. Archaeometry 25:201–213. doi:10.1111/j.1475-4754.1983.tb00677.x

    Article  CAS  Google Scholar 

  11. Segebade C (1985) Some remarks on volatility losses of several sample components during activation with high energy bremsstrahlung. In Sansoni B (ed) Zentralabteilung fuer Chemische Analysen. Kernforschungsanlage Juelich G.m.b.H. (Germany, F.R.). pp 183-184

  12. Parry SJ (1990) Activation spectrometry in chemical analysis. Wiley, New York

    Google Scholar 

  13. Burks M, Dreyer J (2014) GeGI: Chicago field test report, LLNL-TR-656851

  14. Hull E, Kiser M (2016) Radioactive threat vision via quantitative gamma-ray imaging. In: NCT CBRNe USA hosted an innovation stream, pp 1–11

  15. Takahashi T, Watanabe S (2001) Recent progress in CdTe and CdZnTe detectors. IEEE Trans Nucl Sci 48:950–959. doi:10.1109/23.958705

    Article  CAS  Google Scholar 

  16. He Z (2002) Large volume HgI2 gamma-ray spectrometers. In: AIP conference proceedings. AIP, pp 113–117

  17. Wang YJ, Iwanczyk JS, Patt BE (1994) New concepts for scintillator/HgI/sub 2/gamma ray spectroscopy. IEEE Trans Nucl Sci 41:910–914. doi:10.1109/23.322830

    Article  CAS  Google Scholar 

  18. Segebade C, Hedrich M, Haase O, Baede B (2008) Large sample activation analysis: monitoring of photovoltaic module recycling using radioanalytical methods. J Radioanal Nucl Chem 276:29–33

    Article  CAS  Google Scholar 

  19. Weise H-P, Segebade C (1977) Application of X-ray spectroscopy in nondestructive photon activation analysis. J Radioanal Chem 37:195–202. doi:10.1007/BF02520525

    Article  CAS  Google Scholar 

  20. Segebade C, Weise HP (1978) Comparison of sensitivity estimates for low energy photon and classical gamma-ray spectroscopy applied to photon activation analysis. J Radioanal Chem 45:209–220. doi:10.1007/BF02517128

    Article  CAS  Google Scholar 

  21. Weise H-P, Segebade C (1979) Use of low energy photon spectroscopy in activation analysis of noble metals with high-energy bremsstrahlung. J Radioanal Chem 49:95–102. doi:10.1007/BF02520962

    Article  CAS  Google Scholar 

  22. Operating Software for MPA-3, SPA-3, MPA4, MPA4T, MCS6A. http://www.fastcomtec.com/fwww/datashee/mpa/mpant.pdf

  23. GENIE-2000 Gamma Analysis. http://genie-2000-gamma-analysis.software.informer.com/

  24. MAESTRO. www.ortec-online.com/download/MAESTRO.pdf

  25. Sun ZJ, Segebade C, Wells D, Green J (2011) Web-based spectrum analysis software for photon activation analysis. J Radioanal Nucl Chem 291:287–292. doi:10.1007/s10967-011-1209-5

    Article  CAS  Google Scholar 

  26. Blaauw M, Osorio Fernandez V, van Espen P et al (1997) The 1995 IAEA intercomparison of γ-ray spectrum analysis software. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 387:416–432. doi:10.1016/S0168-9002(97)00015-6

    Article  CAS  Google Scholar 

  27. Arnold D, Blaauw M, Fazinic S, Kolotov VP (2005) The 2002 IAEA intercomparison of software for low-level γ-ray spectrometry. Nucl Instrum Methods Phys Res Sect A Accel Spectrom Detect Assoc Equip 536:196–210. doi:10.1016/j.nima.2004.10.012

    Article  CAS  Google Scholar 

  28. Segebade C, Bode P, Goerner W (2007) The problem of large samples: an activation analysis study of electronic waste material. J Radioanal Nucl Chem 271:261–268. doi:10.1007/s10967-007-0202-5

    Article  CAS  Google Scholar 

  29. Stamatelatos IE, Vasilopoulou T, Filippaki E et al (2016) Photon activation analysis of large metallurgical slag samples using a 23 MV medical linear accelerator. J Radioanal Nucl Chem 309:165–171. doi:10.1007/s10967-016-4753-1

    Article  CAS  Google Scholar 

  30. Lutz GJ, De Soete D (1968) Determination of carbon in sodium by photon activation analysis. Anal Chem 40:820–822. doi:10.1021/ac60260a021

    Article  CAS  Google Scholar 

  31. Lutz GJ (1970) Determination of oxygen in sodium by photon activation analysis. Anal Chem 42:531–532. doi:10.1021/ac60286a030

    Article  CAS  Google Scholar 

  32. Lutz GJ, Masters LW (1970) Determination of carbon in high purity metals by photon activation analysis. Anal Chem 42:948–950. doi:10.1021/ac60290a031

    Article  CAS  Google Scholar 

  33. Chapyzhnikov BA, Malikova ED, Kunin LL et al (1973) Determination de O et N dans les metaux alcalins et de O dans d’autres metaux par methode d’activation γ avec separation chimique des isotopes de courtes periodes. J Radioanal Chem 17:275–290. doi:10.1007/BF02520791

    Article  CAS  Google Scholar 

  34. Fedoroff M, Loos-Neskovic C, Revel G (1977) Determination of carbon in metals by photon activation. J Radioanal Chem 38:107–113. doi:10.1007/BF02520187

    Article  CAS  Google Scholar 

  35. Schmitt BF, Fusban HU (1981) Die Photonenaktivierungsanalyse von Kohlenstoff, Stickstoff und Sauerstoff in Refraktärmetallen. In: Proceedings of the international conference on analysis of non-metals in metals, pp 307–320

  36. Merchel S, Berger A (2007) Determination of nitrogen in boron carbide by instrumental photon activation analysis. Anal Bioanal Chem 388:385–389

    Article  CAS  Google Scholar 

  37. Segebade C, Goerner W (2011) Photon activation analysis of light elements using “non-gamma” radiation spectroscopy—the instrumental determination of phosphorus. AIP Publishing, Melville, pp 469–472

    Google Scholar 

  38. Aras NK, Zoller WH, Gordon GE, Lutz GJ (1973) Instrumental photon activation analysis of atmospheric particulate material—analytical chemistry (ACS Publications). Anal Chem 45:1481–1490

    Article  CAS  Google Scholar 

  39. Alian A, Sansoni B (1985) A review on activation analysis of air particulate matter. J Radioanal Nucl Chem 89:191–275

    Article  CAS  Google Scholar 

  40. Roberts TM, Paciga JJ, Hutchinson TC et al (1974) Lead contamination around two secondary smelters in downtown Toronto-estimation of ongoing pollution and accumulation by humans. University of Toronto, Toronto

    Google Scholar 

  41. Jervis RE, Paciga JJ, Chattopadhyay A (1976) Measurement, detection, and control of environmental pollutants. In: Proceedings of an international symposium on the development of nuclear-based techniques for the measurement, detection, and control of environmental pollutants. IAEA, Vienna, Austria, pp 125–150

  42. Segebade C, Schmitt BF, Kühl M (1985) Instrumental analysis of air dust by activation with photons and photoneutrons. Int J Environ Anal Chem 20:187–203. doi:10.1080/03067318508077057

    Article  CAS  Google Scholar 

  43. Cawse PA (1976) Intercomparison of analysis of air filter deposits for trace elements, 1st edn. London, H.M. Stationery Office

    Google Scholar 

  44. Williams DR, Hislop JS (1977) The non destructive determination of iodine in soils and biological materials by high energy gamma-photon activation. J Radioanal Chem 39:359–373. doi:10.1007/BF02517242

    Article  CAS  Google Scholar 

  45. Chattopadhyay A (1977) Optimal use of instrumental neutron and photon activation analyses for multielement determinations in sewage sludges. J Radioanal Chem 37:785–799. doi:10.1007/BF02519390

    Article  CAS  Google Scholar 

  46. Segebade C, Schmitt B-F, Fusban H-U, Kuhl M (1984) Application of photon activation analysis to the determination of the distribution of toxic elements in soil of a sewage farm. Fresenius’ Zeitschrift fur Anal Chemie 317:413–421. doi:10.1007/BF00494509

    Article  CAS  Google Scholar 

  47. Jervis RE, Tiefenbach B, Chattopadhyay A (1974) Determination of trace cadmium in biological materials by neutron and photon activation analyses. Can J Chem 52:3008–3020. doi:10.1139/v74-441

    Article  CAS  Google Scholar 

  48. Chattopadhyay A, Bennett LGI, Jervis RE (1972) Activation analysis of environmental pollutants. Can J Chem Eng 50:189–193. doi:10.1002/cjce.5450500209

    Article  CAS  Google Scholar 

  49. Jervis R, Chattopadhyay A, Csillag E, Tiefenbach B (1975) Nuclear activation determination of heavy metals in great lakes sediments, soils, and vegetation. In: Water qual. parameters. ASTM International, West Conshohocken, PA, pp 82–82–13

  50. Cooper RD, Linekin DM, Brownell GL (1967) Activation analysis of biological tissue without chemical separation. In: Proceedings of the symposium on nuclear activation techniques in the life sciences. Amsterdam, p 65

  51. Andersen GH, Graber FM, Guinn VP et al (1967) Photonuclear activation analysis of biological materials for various elements, including flourine. In: Proceedings of the symposium on nuclear activation techniques in the life sciences. Amsterdam, pp 99–112

  52. Hislop JS, Williams DR (1973) The use of non-destructive high energy gamma photon activation for trace element survey analysis. J Radioanal Chem 16:329–341. doi:10.1007/BF02517878

    Article  CAS  Google Scholar 

  53. Ohno S, Suzuki M, Kadota M, Yatazawa M (1973) Determination of trace fluorine in biological materials by photonuclear activation analysis. Mikrochim Acta 61:61–68. doi:10.1007/BF01220134

    Article  Google Scholar 

  54. Sun ZJ, Wells DP, Segebade C et al (2012) A provenance study of coffee by photon activation analysis. J Radioanal Nucl Chem 296:293–299. doi:10.1007/s10967-012-2021-6

    Article  CAS  Google Scholar 

  55. Galatanu V, Engelmann C (1982) Analyse multielementaire des cheveux par photoactivation nucleaire. J Radioanal Chem 74:161–180. doi:10.1007/BF02520369

    Article  CAS  Google Scholar 

  56. Jervis RE, Tiefenbach B, Chattopadhyay A (1977) Scalp hair as a monitor of population exposure to environmental pollutants. J Radioanal Chem 37:751–760. doi:10.1007/BF02519387

    Article  CAS  Google Scholar 

  57. Beckett PHT, Wollan E, Cawse PA et al (1978) The use of grasses as indicators of environmental pollution. Plant Soil 49:691–695. doi:10.1007/BF02183298

    Article  CAS  Google Scholar 

  58. Chattopadhyay A, Jervis RE (1974) Multielement determination in market-garden soils by instrumental photon activation analysis. Anal Chem 46:1630–1639. doi:10.1021/ac60348a059

    Article  CAS  Google Scholar 

  59. Chattopadhyay A, Roberts TM, Jervis Robert E (1977) Scalp hair as a monitor of community exposure to lead. Arch Environ Health 32:226–236

    Article  CAS  Google Scholar 

  60. Rose J (1983) Trace elements in health: a review of current issues. Butterworths, London

    Google Scholar 

  61. Brune D (1969) Epithermal neutron activation analysis for iodine in small aqueous samples. Anal Chim Acta 46:17–21. doi:10.1016/0003-2670(69)80036-X

    Article  CAS  Google Scholar 

  62. Kairento AL, Nikkinen-Vilkki P (1974) Photon activation of biological samples and patients irradiated with a betatron. Strahlentherapie 148:155–162

    CAS  Google Scholar 

  63. McNeill KG (1974) Photonuclear reactions in medicine. Phys Today 27:75. doi:10.1063/1.3128536

    Article  CAS  Google Scholar 

  64. Wagner K, Görner W, Hedrich M et al (1998) Analysis of chlorine and other halogens by activation with photons and neutrons. Fresenius J Anal Chem 362:382–386. doi:10.1007/s002160051089

    Article  CAS  Google Scholar 

  65. Segebade C, Thümmel H-W, Heller W (1993) Photon activation analysis of environmental water: studies of direct sample irradiation. J Radioanal Nucl Chem Artic 167:383–390. doi:10.1007/BF02037196

    Article  CAS  Google Scholar 

  66. Wilkniss PE, Linnenbom V (1968) Use of the Naval Research Laboratory 60-MeV LINAC for photon activation analysis with particular reference to the determination of fluorine in sea water. In: Proceedings 2nd conference practical aspects of activation analysis with charged particles, Liege, Belgium, p 147

  67. Wilkniss PE, Skinner KJ, Cheek CH (1968) Radiochemical separation of 18F from irradiated sea water. Radiochim Acta. doi:10.1524/ract.1968.10.12.76

    Google Scholar 

  68. Gordon CM, Larson RE (1970) Determination of strontium in sea water by photon activation analysis. Radiochem Radioanal Lett 5:369–373

    CAS  Google Scholar 

  69. Wilkniss PE (1969) The determination of fluorine, chlorine, bromine and lodine in a single sample by photon activation analysis. Radiochim Acta. doi:10.1524/ract.1969.11.34.138

    Google Scholar 

  70. Wilkniss PE (1967) Observation of the reaction O18(p, n)F18 initiated by protons in water irradiated in a linear accelerator. Int J Appl Radiat Isot 18:809–813. doi:10.1016/0020-708X(67)90002-6

    Article  CAS  Google Scholar 

  71. Knöchel A, Petersen W (1983) Results of an interlaboratory test for heavy metals in elbe water. Fresenius’ Zeitschrift fur Anal Chemie 314:105–113. doi:10.1007/BF00482233

    Article  Google Scholar 

  72. Meijers P, Aten AHW (1969) Photon activation analysis of iron meteorites. Radiochim Acta 11:60. doi:10.1524/ract.1969.11.1.60

    CAS  Google Scholar 

  73. Quandt U, Herr W (1974) Beryllium abundance of meteorites determined by “non-destructive” photon activation. Earth Planet Sci Lett 24:53–58. doi:10.1016/0012-821X(74)90007-7

    Article  CAS  Google Scholar 

  74. Ebihara M, Oura Y (2004) Chemical characterization of the extraterrestrial material returned by future space mission: an application of nuclear activation methods. Adv Sp Res 34:2305–2310. doi:10.1016/j.asr.2004.06.004

    Article  CAS  Google Scholar 

  75. Oura Y, Latif SA, Setoguchi M et al (1999) Radiochemical photon activation analysis of Halogens in meteorites. Kakuriken Kenkyu Hokoku 32:42–49

    CAS  Google Scholar 

  76. Ebihara M, Oura Y, Ishii T et al (2000) How effectively is the photon activation analysis applied to meteorite sample. J Radioanal Nucl Chem 244:491–496

    Article  CAS  Google Scholar 

  77. Řanda Z, Kučera J, Soukal L (2003) Elemental characterization of the new Czech meteorite “Morávka” by neutron and photon activation analysis. J Radioanal Nucl Chem 257:275–283

    Article  Google Scholar 

  78. Mizera J, Řanda Z, Krausová I (2016) Neutron and photon activation analyses in geochemical characterization of Libyan Desert Glass. J Radioanal Nucl Chem. doi:10.1007/s10967-016-5094-9

    Google Scholar 

  79. Mamtimin M, Cole PL, Segebade C (2013) Photon activation analysis on lunar dust simulants. In: 11th international topical meeting on nuclear applications of accelerators

  80. Řanda Z, Benada J, Kuncíř J et al (1972) Radioanalytical methods for the non-destructive analysis of lunar samples. J Radioanal Chem 11:305–337. doi:10.1007/BF02514032

    Article  Google Scholar 

  81. Reimers P, Lutz GJ, Segebade C (1977) The non-destructive determination of gold, silver and copper by photon activation analysis of coins and art objects. Archaeometry 19:167–172. doi:10.1111/j.1475-4754.1977.tb00195.x

    Article  Google Scholar 

  82. Segebade C (2013) Edward’s sword?: a non-destructive study of a medieval king’s sword. AIP Publishing, Melville, pp 417–421

    Google Scholar 

  83. Segebade C (1993) Zerstörungsfreie Untersuchungen von Boulle-Marketerien. ZKK Zeitschrift für Kunsttechnologie und Konserv 7:123–133

    Google Scholar 

  84. Kohn MJ, Schoeninger MJ, Barker WW (1999) Altered states: effects of diagenesis on fossil tooth chemistry. Geochim Cosmochim Acta 63:2737–2747. doi:10.1016/S0016-7037(99)00208-2

    Article  CAS  Google Scholar 

  85. Keatings KW, Heaton THE, Holmes JA (2002) The effects of diagenesis on the trace element and stable isotope geochemistry of non-marine ostracod valves. J Paleolimnol 28:245–252

    Article  Google Scholar 

  86. Suarez CA, Suarez MB, Terry DO, Grandstaff DE (2007) Rare earth element geochemistry and taphonomy of the early cretaceous crystal geyser dinosaur quarry, east-central Utah. Palaios 22:500–512. doi:10.2110/palo.2005.p05-126r

    Article  Google Scholar 

  87. Trueman CNG (1999) Rare earth element geochemistry and taphonomy of terrestrial vertebrate assemblages. Palaios 14:555–568

    Article  Google Scholar 

  88. Patrick D, Martin JE, Parris DC (2007) Rare earth element determination of the stratigraphic position of the holotype of Mosasaurus missouriensis (Harlan), the first named fossil reptile from the American West. Geol Soc Am Spec Pap 427:155–165. doi:10.1130/2007.2427(11)

    Google Scholar 

  89. MacFadden BJ, Labs-Hochstein J, Hulbert RC, Baskin JA (2007) Revised age of the late Neogene terror bird (Titanis) in North America during the Great American Interchange. Geology 35:123. doi:10.1130/G23186A.1

    Article  Google Scholar 

  90. Trueman CN, Palmer MR, Field J et al (2008) Comparing rates of recrystallisation and the potential for preservation of biomolecules from the distribution of trace elements in fossil bones. CR Palevol 7:145–158. doi:10.1016/j.crpv.2008.02.006

    Article  Google Scholar 

  91. Trueman CN, Behrensmeyer AK, Tuross N, Weiner S (2004) Mineralogical and compositional changes in bones exposed on soil surfaces in Amboseli National Park, Kenya: diagenetic mechanisms and the role of sediment pore fluids. J Archaeol Sci 31:721–739. doi:10.1016/j.jas.2003.11.003

    Article  Google Scholar 

  92. Mizera J, Randa Z (2009) Neutron and photon activation analyses in geochemical characterization of sediment profiles at the Jurassic-Cretaceous boundary. J Radioanal Nucl Chem 282:53–57. doi:10.1007/s10967-009-0187-3

    Article  CAS  Google Scholar 

  93. Randa Z, Ulrych J, Turek K et al (2010) Radiobarites from the Cenozoic volcanic region of the Bohemian Massif: radiochemical study, history, and lead isotopic composition. J Radioanal Nucl Chem 283:89–94. doi:10.1007/s10967-009-0095-6

    Article  CAS  Google Scholar 

  94. Bogwardt T (2014) A test of a non-destructive nuclear forensics technique using photon activation analysis of fossils and source matrices. South Dakota School of Mines and Technology, Rapid City

    Google Scholar 

  95. Kanda Y, Oikawa T, Niwaguchi T (1980) Multi-element determinations of trace elements in glass by instrumental photon activation analysis. Anal Chim Acta 121:157–163

    Article  CAS  Google Scholar 

  96. Starovoitova VN, Segebade C (2016) Photon activation analysis as a tool for evidentiary sample identification: a feasibility study. J Radioanal Nucl Chem

  97. Hillann RJ, Persons TM (2012) Supply chain: suspect counterfeit electronic parts can be found on internet purchasing platforms, Report to the Committee on Armed Services, U.S. Senate, GAO-12-375

  98. Breban P, Blondiaux G, Valladon M et al (1979) Etude des possibilites d’utilisation analytique des isomeres nucleaires produits par reactions (γ, γ′) entre 6 et 8 MeV. Nucl Instrum Methods 158:205–215. doi:10.1016/S0029-554X(79)92040-8

    Article  CAS  Google Scholar 

  99. Kapitsa SP, Martynov YT, Sulin VV, Tsipenyuk YM (1973) On the use of an electron cyclotron for the rapid photon activation analysis of ore samples for gold. Sov At Energy 34:251–253. doi:10.1007/BF01154851

    Article  Google Scholar 

  100. Bourmistenko YN (1981) Gamma-activation installation for fast determination of gold and its accompanying elements in ore samples. Isot Isot Environ Heal Stud 17:241–243. doi:10.1080/10256018108544599

    Article  Google Scholar 

  101. Pchelkin VA, Sviderskii MF, Grinberg LL et al (1973) Etude et mise au point de methodes de determination par activation de Au, ta et sc dans des echantillons de substances naturelles. J Radioanal Chem 18:85–96. doi:10.1007/BF02520693

    Article  CAS  Google Scholar 

  102. Tickner J, O’Dwyer J, Roach G et al (2015) Analysis of precious metals at parts-per-billion levels in industrial applications. Radiat Phys Chem 116:43–47. doi:10.1016/j.radphyschem.2015.01.006

    Article  CAS  Google Scholar 

  103. Alsufyani SJ, Liegey LR, Starovoitova VN (2014) Gold bearing ore assays using 197Au(γ, n)196Au photonuclear reaction. J Radioanal Nucl Chem 302:623–629. doi:10.1007/s10967-014-3239-2

    Article  CAS  Google Scholar 

  104. Segebade C, Lutz GJ, Schmitt BF (1979) Bestimmung von Pd, Ag, Pt und Au in Elektrolytkupfer durch Aktivierung mit hochenergetischen Photonen. Fresenius’ Zeitschrift fur Anal Chemie 296:263–265. doi:10.1007/BF00471936

    Article  CAS  Google Scholar 

  105. Baker CAA, Williams DRR (1968) Photon-activation analysis for carbon and oxygen. Talanta 15:1143–1151. doi:10.1016/0039-9140(68)80037-2

    Article  CAS  Google Scholar 

  106. Samosyuk VN, Firsov VI, Chapyzhnikov BA et al (1977) The use of the microtron for the activation analysis of pure metals and alloys. J Radioanal Chem 37:203–212. doi:10.1007/BF02520526

    Article  CAS  Google Scholar 

  107. Segebade C, Dudzus T (1974) Bestimmung von Fluor in Aluminium, Kupfer und Blei durch Aktivierungsanalyse mit 25 MeV – Photonen. Radiochem Radioanal Lett 16:137–145

    CAS  Google Scholar 

  108. Galaţanu V, Grecescu M, Baciu G (1977) Photoactivation analysis of impurities in zirconium oxide. J Radioanal Chem 38:215–222. doi:10.1007/BF02520199

    Article  Google Scholar 

  109. Galatanu V, Engelmann C (1981) Determination de quelques elements traces dans le charbon, d’une maniere non destructive, par photoactivation nucleaire. J Radioanal Chem 67:143–163. doi:10.1007/BF02516238

    Article  Google Scholar 

  110. Leonhardt JW, Bothe H-K, Langrock E-J et al (1982) Coal analysis by means of neutron-, gamma activation analysis and X-ray techniques. J Radioanal Chem 71:181–187. doi:10.1007/BF02516148

    Article  CAS  Google Scholar 

  111. Ledingham KWD, Kelliher MG, Robertson SD (1982) Multielement photon activation analysis of coal samples using a Compton suppressed Ge(Li) detector. J Radioanal Chem 71:169–180. doi:10.1007/BF02516147

    Article  CAS  Google Scholar 

  112. Pringle TG, Landsberger S, Davidson WF, Jervis RE (1985) Determination of trace and minor elements in coal: a comparison between instrumental photon and thermal neutron activation analysis. J Radioanal Nucl Chem 90:363–372. doi:10.1007/BF02060793

    Article  CAS  Google Scholar 

  113. Bode P, Overwater RMW, De Goeij JJM (1997) Large-sample neutron activation analysis: present status and prospects. J Radioanal Nucl Chem 216:5–11. doi:10.1007/BF02034486

    Article  CAS  Google Scholar 

  114. Tickner J, Rajarao R, Lovric B et al (2016) Measurement of gold and other metals in electronic and automotive waste using gamma activation analysis. J Sustain Metall. doi:10.1007/s40831-016-0051-y

    Google Scholar 

  115. Korthoven PJM, Wechter MA, Voigt AF (1967) Determination of gadolinium and europium in their tungsten bronzes by high energy photon activation and computer resolution of gamma-rar spectra. Anal Chem 39:1594–1598

    Article  CAS  Google Scholar 

  116. Schweikert E, Albert P (1964) Nouvelles expériences sur l’analyse par radioactivation dans les photons de 18 à 27 MeV. In: Proceedings of the IAEA symposium on radiochemical methods of analysis, pp 323–337

  117. Kondo Y (1976) Photoactivation analysis of metallic elements in PVC sheets. Isotopes 25:105–108

    CAS  Google Scholar 

  118. Segebade C, Fusban HU (1981) Uranium analysis by activation with 30 MeV bremsstrahlung. Radiochem Radioanal Lett 48:311–328

    CAS  Google Scholar 

  119. Simonits A, Corte F, Hoste J (1975) Single-comparator methods in reactor neutron activation analysis. J Radioanal Chem 24:31–46. doi:10.1007/BF02514380

    Article  CAS  Google Scholar 

  120. Mishin AV (2005) Advances in X-band and S-band linear accelerators for security, NDT, and other applications. In: Proceedings 2005 21st IEEE particle accelerator conference (PAC 05) 16–20 May 2005, Knoxville, Tennessee, p 240

  121. Harmon JF, Wells DP, Hunt AW (2011) Neutrons and photons in nondestructive detection. Rev Accel Sci Technol 04:83–101. doi:10.1142/S1793626811000495

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeriia N. Starovoitova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Segebade, C., Starovoitova, V.N., Borgwardt, T. et al. Principles, methodologies, and applications of photon activation analysis: a review. J Radioanal Nucl Chem 312, 443–459 (2017). https://doi.org/10.1007/s10967-017-5238-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5238-6

Keywords

Navigation