Skip to main content
Log in

Measurement of naturally occurring radioactive material, 238U and 232Th: part 2—optimization of counting time

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

An effort has been made to optimize the counting time for low-level measurement of naturally occurring radioactive material (NORM) by considering the standard deviation between the activity values of different photopeaks and counting error. It is observed that at lower counting time, relative standard deviation (RSD) varies randomly, but attains a gradual trend with increasing time and also comes closure to the counting error. Therefore minimum counting time for low-level NORM measurement of 238U and 232Th would be the time required to stabilize the RSD values.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Durec F, Betti M, Durecova A (2008) Intercomparison exercise on the determination of radionuclides in sediment from the Dudvah River. Appl Radiat Isot 66:1706–1710

    Article  CAS  Google Scholar 

  2. Naskar N, Lahiri S, Chaudhuri P, Srivastava A (2016) Measurement of naturally occurring radioactive material, 238U and 232Th: anomalies in photo-peak selection. J Radioanal Nucl Chem 310:1381–1396

    Article  CAS  Google Scholar 

  3. Adukpo OK, Faanu A, Lawluvi H, Tettey-Larbi L, Emi-Reynolds G, Darko EO, Kansaana C, Kpeglo DO, Awudu AR, Glover ET, Amoah PA, Efa AO, Agyemang LA, Agyeman BK, Kpordzro R, Doe AI (2015) Distribution and assessment of radionuclides in sediments, soil and water from the lower basin of river Pra in the Central and Western Regions of Ghana. J Radioanal Nucl Chem 303:1679–1685

    CAS  Google Scholar 

  4. Khandaker MU (2016) Letter to the editor: “Distribution and assessment of radionuclides in sediments, soil and water from the lower basin of river Pra in the central and western regions of Ghana”. J Radioanal Nucl Chem 307:1–2

    Article  Google Scholar 

  5. Adukpo OK, Faanu A, Lawluvi H, Tettey-Larbi L, Emi-Reynolds G, Darko EO, Kansaana C, Kpeglo DO, Awudu AR, Glover ET, Amoah PA, Efa AO, Agyemang LA, Agyeman BK, Kpordzro R, Doe AI (2016) Reply to the letter written by Mayeen Uddin Khandaker on: “Distribution and assessment of radionuclides in sediments, soil and water from the lower basin of river Pra in the central and western regions of Ghana. J Radioanal Nucl Chem 307:3

    Article  CAS  Google Scholar 

  6. Chaudhuri P, Naskar N, Lahiri S (2017) Measurement of background radioactivity in surface soil of Indian Sundarban. J Radioanal Nucl Chem. doi:10.1007/s10967-016-5158-x

    Google Scholar 

  7. Boukhenfouf W, Boucenna A (2011) The radioactivity measurements in soils and fertilizers using gamma spectrometry technique. J Environ Radioact 102:336–339

    Article  CAS  Google Scholar 

  8. Jaison TJ, Patra AK, Jha MK, Hedge AG (2010) Assessment of natural radioactivity in silt samples from Moticher lake near Kakrapar Atomic Power Station, India. J Radioanal Nucl Chem 284:583–589

    Article  CAS  Google Scholar 

  9. Kurnaz A, Küçükömeroğlu B, Keser R, Okumusoglu NT, Korkmaz F, Karahan G, Çevik U (2007) Determination of radioactivity levels and hazards of soil and sediment samples in Fırtına Valley (Rize, Turkey). Appl Radiat Isot 65:1281–1289

    Article  CAS  Google Scholar 

  10. Mahur AK, Gupta M, Varshney R, Sonkawade RG, Verma KD, Prasad R (2013) Radon exhalation and gamma radioactivity levels in soil and radiation hazard assessment in the surrounding area of National Thermal Power Corporation, Dadri (U.P.), India. Radiat Meas 50:130–135

    Article  CAS  Google Scholar 

  11. Tchokossa P, Makon TB, Nemba RM (2012) Assessment of radioactivity contents and associated risks in some soil used for agriculture and building materials in Cameroon. J Environ Prot 3:1571–1578

    Article  Google Scholar 

  12. Gupta M, Chauhan RP, Garg A, Kumar S, Sonkawade RG (2010) Estimation of radioactivity in some sand and soil samples. Indian J Pure Appl Phys 48:482–485

    CAS  Google Scholar 

  13. Alatise OO, Babalola IA, Olowofela JA (2008) Distribution of some natural gamma-emitting radionuclides in the soils of the coastal areas of Nigeria. J Environ Radioact 99:1746–1749

    Article  CAS  Google Scholar 

  14. Al-Jundi J, Al-Bataina BA, Abu-Rukah Y, Shehadeh HM (2003) Natural radioactivity concentrations in soil samples along the Amman Aqaba Highway, Jordan. Radiat Meas 36:555–560

    Article  CAS  Google Scholar 

  15. Maxwell O, Wagiran H, Ibrahim N, Lee SK, Sabri S (2013) Comparison of activity concentration of 238U, 232Th and 40K in different layers of subsurface structures in Dei-Dei and Kubwa, Abuja, northcentral Nigeria. Radiat Phys Chem 91:70–80

    Article  CAS  Google Scholar 

  16. Yasmin S, Barua BS, Kamal M, Rashid MdA (2014) An analysis for distribution of natural radionuclides in soil, sand and sediment of Potenga Sea beach area of Chittagong, Bangladesh. J Environ Prot 5:1553–1563

    Article  Google Scholar 

  17. Saleh M, Abu Shayeb M (2014) Natural radioactivity distribution of Southern part of Jordan (Ma′an) soil. Ann Nucl Energ 65:184–189

    Article  CAS  Google Scholar 

  18. Ribeiro FCA, da Lauria D, do Rio MA, da Cunha FG, Oliveira SW, Lima ED, Franzen M (2017) Mapping soil radioactivity in the Fernando de Noronha archipelago, Brazil. J Radioanal Nucl Chem 311:577–587

    Article  CAS  Google Scholar 

  19. Kılıç Ö, Çotuk Y (2011) Radioactivity concentrations in sediment and mussel of Bosphorus and Golden Horn. J Radioanal Nucl Chem 289:627–635

    Article  Google Scholar 

  20. Janković M, Todorović D, Savanović M (2008) Radioactivity measurements in soil samples collected in the Republic of Srpska. Radiat Meas 43:1448–1452

    Article  Google Scholar 

  21. Chowdhury MI, Alam MN, Hazari SKS (1999) Distribution of radionuclides in the river sediments and coastal soils of Chittagong, Bangladesh and evaluation of the radiation hazard. Appl Radiat Isot 51:747–755

    Article  CAS  Google Scholar 

  22. Bakım M, Uğur Görgün A (2015) Radioactivity in soils and some terrestrial foodstuffs from organic and conventional farming areas in Izmir, Turkey. J Radioanal Nucl Chem 306:237–242

    Article  Google Scholar 

  23. LaBrecque JJ, Cordoves PR, Cordoves MA, Pérez K, Palacios D, Alfonso AJ (2010) Distribution of 137Cs, 40K, 232Th and 238U in coastal marine sediments of Margarita Island, Venezuela. J Radioanal Nucl Chem 283:669–674

    Article  CAS  Google Scholar 

  24. Alaamer AS (2008) Assessment of human exposures to natural sources of radiation in soil of Riyadh, Saudi Arabia. Turk J Eng Environ Sci 32:229–234

    CAS  Google Scholar 

  25. Powell BA, Hughes LD, Soreefan AM, Falta D, Wall M, DeVol TA (2007) Elevated concentrations of primordial radionuclides in sediments from the Reedy River and surrounding creeks in Simpsonville, South Carolina. J Environ Radioact 94:121–128

    Article  CAS  Google Scholar 

  26. Yii MW, Wan Mahmood Z, Ahmad Z, Jaffary NA, Ishak N (2011) NORM activity concentration in sediment cores from the Peninsular Malaysia East Coast Exclusive Economic Zone. J Radioanal Nucl Chem 289:653–661

    Article  CAS  Google Scholar 

  27. Miller M, Voutchkov M (2014) Evaluation of gamma activities of naturally occurring radioactive materials in uncontaminated surface soils of Jamaica. J Radioanal Nucl Chem 300:303–313

    Article  CAS  Google Scholar 

  28. El Samad O, Baydoun R, Nsouli B, Darwish T (2013) Determination of natural and artificial radioactivity in soil at North Lebanon province. J Environ Radioact 125:36–39

    Article  Google Scholar 

  29. Stajic JM, Milenkovic B, Pucarevic M, Stojic N, Vasiljevic I, Nikezic D (2016) Exposure of school children to polycyclic aromatic hydrocarbons, heavy metals and radionuclides in the urban soil of Kragujevac city, Central Serbia. Chemosphere 146:68–74

    Article  CAS  Google Scholar 

  30. Aytekin H, Çağatay Tufan M, Küçük C (2015) Natural radioactivity measurements and dose assessments in sand samples collected from Zonguldak beaches in Turkey. J Radioanal Nucl Chem 303:2227–2232

    CAS  Google Scholar 

  31. Kobya Y, Taşkin H, Yeşilkanat CM, Varinlioğlu A, Korcak S (2015) Natural and artificial radioactivity assessment of dam lakes sediments in Çoruh River, Turkey. J Radioanal Nucl Chem 303:287–295

    Article  CAS  Google Scholar 

  32. Song G, Chen D, Tang Z, Zhang Z, Xie W (2012) Natural radioactivity levels in topsoil from the Pearl River Delta Zone, Guangdong, China. J Environ Radioact 103:48–53

    Article  CAS  Google Scholar 

  33. Agbalagba EO, Onoja RA (2011) Evaluation of natural radioactivity in soil, sediment and water samples of Niger Delta (Biseni) flood plain lakes, Nigeria. J Environ Radioact 102:667–671

    Article  CAS  Google Scholar 

  34. Rahman SU, Matiullah Malik F, Rafique M, Anwar J, Ziafat M, Jabbar A (2011) Measurement of naturally occurring/fallout radioactive elements and assessment of annual effective dose in soil samples collected from four districts of the Punjab Province, Pakistan. J Radioanal Nucl Chem 287:647–655

    Article  CAS  Google Scholar 

  35. Ele Abiama P, Owono Ateba P, Ben-Bolie GH, Ekobena FHP, El Khoukhi T (2010) High background radiation investigated by gamma spectrometry of the soil in the southwestern region of Cameroon. J Environ Radioact 101:739–743

    Article  CAS  Google Scholar 

  36. Ahmed NK, Mohamed El-Arabi AG (2005) Natural radioactivity in farm soil and phosphate fertilizer and its environmental implications in Qena governorate, Upper Egypt. J Environ Radioact 84:51–64

    Article  CAS  Google Scholar 

  37. Yang Ya-xin Wu, Xin-min Jiang Zhong-ying, Wang Wei-xing Lu, Ji-gen Lin J, Lei-Ming Wang, Yuan-fu Hsia (2005) Radioactivity concentrations in soils of the Xiazhuang granite area, China. Appl Radiat Isot 63:255–259

    Article  CAS  Google Scholar 

  38. Alabdullah J, Michel H, Barci V, Féraud G, Barci-Funel G (2013) Spatial and vertical distributions of natural and anthropogenic radionuclides and cesium fractionation in sediments of the Var river and its tributaries (southeast France). J Radioanal Nucl Chem 298:25–32

    Article  CAS  Google Scholar 

  39. Kannan V, Rajan MP, Iyengar MAR, Ramesh R (2002) Distribution of natural and anthropogenic radionuclides in soil and beach sand samples of Kalpakkam (India) using hyper pure germanium (HPGe) gamma ray spectrometry. Appl Radiat Isot 57:109–119

    Article  CAS  Google Scholar 

  40. Dragović S, Janković-Mandić L, Dragović R, Đorđević M, Đokić M, Kovačević J (2014) Lithogenic radionuclides in surface soils of Serbia: spatial distribution and relation to geological formations. J Geochem Explor 142:4–10

    Article  Google Scholar 

  41. Chakraborty SR, Azim R, Rezaur Rahman AKM, Sarker R (2013) Radioactivity concentrations in soil and transfer factors of radionuclides from soil to grass and plants in the Chittagong city of Bangladesh. J Phys Sci 24:95–113

    CAS  Google Scholar 

  42. Latif SA, Kinsara AA, Molla NI, Nassef MH (2014) Natural radioactivity measurements in agricultural soil, fertilizer and crops in some specific areas of Kingdom of Saudi Arabia. Radiochim Acta 102:513–522

    Article  CAS  Google Scholar 

  43. Murty VRK, Karunakara N (2008) Natural radioactivity in the soil samples of Botswana. Radiat Meas 43:1541–1545

    Article  CAS  Google Scholar 

  44. Srilatha MC, Rangaswamy DR, Sannappa J (2015) Measurement of natural radioactivity and radiation hazard assessment in the soil samples of Ramanagara and Tumkur districts, Karnataka, India. J Radioanal Nucl Chem 303:993–1003

    Article  CAS  Google Scholar 

  45. Pinto P, Yerol N (2014) Studies on the seasonal variation and vertical profiles of natural radionuclides in high background radiation areas of Kerala on the south west coast of India. J Radioanal Nucl Chem 302:813–817

    Article  CAS  Google Scholar 

  46. Usikalu MR, Maleka PP, Malik M, Oyeyemi KD, Adewoyin OO (2015) Assessment of geogenic natural radionuclide contents of soil samples collected from Ogun State, South western, Nigeria. Int J Radiat Res 13:355–361

    Google Scholar 

  47. Mohapatra S, Sahoo SK, Dubey JS, Patra AC, Thakur VK, Tripathy SK, Vidyasagar D, Godbole SV, Ravi PM, Tripathi RM (2015) On the radiological assessment of natural and fallout radioactivity in a natural high background radiation area at Odisha, India. J Radioanal Nucl Chem 303:2081–2092

    Article  CAS  Google Scholar 

  48. Srivastava A, Lahiri S, Maiti M, Knolle F, Hoyler F, Scherer UW, Schnug EW (2014) Study of naturally occurring radioactive material (NORM) in top soil of Punjab State from the North Western part of India. J Radioanal Nucl Chem 302:1049–1052

    Article  CAS  Google Scholar 

  49. Sartandel SJ, Chinnaesakki S, Bara SV, Krishna NS, Vinod Kumar A, Tripathi RM (2014) Assessment of natural and fallout radioactivity in soil samples of Visakhapatnam. J Radioanal Nucl Chem 299:337–342

    Article  CAS  Google Scholar 

  50. Rajeshwari T, Rajesh S, Kerur BR, Anilkumar S, Krishnan N, Pant AD (2014) Natural radioactivity studies of Bidar soil samples using gamma spectrometry. J Radioanal Nucl Chem 300:61–65

    Article  CAS  Google Scholar 

  51. Dusane CB, Mishra S, Sahu SK, Pandit GG (2014) Distribution of 238U, 226Ra, 232Th and 40K in soil samples around Tarapur, India. J Radioanal Nucl Chem 302:1435–1440

    Article  CAS  Google Scholar 

  52. Canbazoğlu C, Turhan Ş, Bakkal S, Uğur FA, Gören E (2013) Analysis of gamma emitting radionuclides (terrestrial and anthropogenic) in soil samples from Kilis province in south Anatolia, Turkey. Ann Nucl Energ 62:153–157

    Article  Google Scholar 

  53. Aközcan S (2012) Distribution of natural radionuclide concentrations in sediment samples in Didim and Izmir Bay (Aegean Sea-Turkey). J Environ Radioact 112:60–63

    Article  Google Scholar 

  54. Al-Sharkawy A, Hiekal MThS, Sherif MI, Badran HM (2012) Environmental assessment of gamma-radiation levels in stream sediments around Sharm El-Sheikh, South Sinai. Egypt. J Environ Radioact 112:76–82

    Article  CAS  Google Scholar 

  55. Wasim M, Iqbal S, Ali M (2016) Radiological and elemental analysis of soils from Hunza in Central Karakoram using gamma-ray spectrometry and k 0-instrumental neutron activation analysis. J Radioanal Nucl Chem 307:891–898

    Article  CAS  Google Scholar 

  56. Hannan M, Wahid K, Nguyen N (2015) Assessment of natural and artificial radionuclides in Mission (Texas) surface soils. J Radioanal Nucl Chem 305:573–582

    Article  CAS  Google Scholar 

  57. Jallad KN (2015) Radioactive characterization of sand samples from Failaka Island in Kuwait. J Radioanal Nucl Chem 303:733–741

    Article  CAS  Google Scholar 

  58. Santawamaitre T, Malain D, Al-Sulaiti HA, Bradley DA, Matthews MC, Regan PH (2014) Determination of 238U, 232Th and 40K activity concentrations in riverbank soil along the Chao Phraya river basin in Thailand. J Environ Radioact 138:80–86

    Article  CAS  Google Scholar 

  59. Özmen SF, Cesur A, Boztosun I, Yavuz M (2014) Distribution of natural and anthropogenic radionuclides in beach sand samples from Mediterranean Coast of Turkey. Radiat Phys Chem 103:37–44

    Article  Google Scholar 

  60. Tufail M, Asghar M, Akram M, Javied S, Khan K, Mujahid SA (2013) Measurement of natural radioactivity in soil from Peshawar basin of Pakistan. J Radioanal Nucl Chem 298:1085–1096

    Article  CAS  Google Scholar 

  61. http://www.nndc.gov/chart. Accessed 30 Dec 2016

Download references

Acknowledgement

Authors gratefully acknowledge Professor Sukalyan Chattopadhyay, HENPP Division of Saha Institute of Nuclear Physics for fruitful discussions. This work is part of DAE-SINP 12 five-year plan project TULIP (Trace, Ultratrace Analysis and Isotope Production). One of the authors, NN would like to thank University Grants Commission (UGC) for providing the necessary fellowship. Alok Srivastava (AS) would like to thank DST-PURSE program for providing funds for sample collection. The support provided to him by Panjab University, Chandigarh, India and Alexander von Humboldt Foundation, Bonn, Germany is also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Lahiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naskar, N., Lahiri, S., Chaudhuri, P. et al. Measurement of naturally occurring radioactive material, 238U and 232Th: part 2—optimization of counting time. J Radioanal Nucl Chem 312, 161–171 (2017). https://doi.org/10.1007/s10967-017-5205-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5205-2

Keywords

Navigation