Skip to main content
Log in

Comparison of measurement and modeling results of the global 10Be flux in topsoil

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Soils are among the major terrestrial reservoirs of atmospheric 10Be isotope and provide information of landscape evolution history. Despite this importance, there is no overview of the global soil 10Be fluxes in topsoil that is linked with atmospheric flux models. A comparison between measured (in topsoil) and atmospherically modeled 10Be fluxes is presented here. The data show relatively good agreement in the latitudinal trends. This feature demonstrates the potential to use the modeling data in estimating soil development/erosion rates in large scale basins where extensive 10Be measurements can be limited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Willenbring JK, Blanckenburg FV (2010) Meteoric cosmogenic beryllium-10 adsorbed to river sediment and soil: applications for Earth-surface dynamics. Earth Sci Rev 98(1–2):105–122

    Article  CAS  Google Scholar 

  2. West N, Kirby E, Bierman P, Slingerland R, Ma L, Rood D, Brantley S (2013) Regolith production and transport at the Susquehanna Shale Hills Critical Zone Observatory, Part 2: insights from meteoric 10Be. J Geophys Res 118(3):1877–1896

    Article  Google Scholar 

  3. Wittmann H, Blanckenburg F, Dannhaus N, Bouchez J, Gaillardet J, Guyot JL, Maurice L, Roig H, Filizola N, Christl M (2015) A test of the cosmogenic 10Be(meteoric)/9Be proxy for simultaneously determining basin-wide erosion rates, denudation rates, and the degree of weathering in the Amazon Basin. J Geophys Res 120(12):S169

    Google Scholar 

  4. Lal D, Peters B (1967) Cosmic ray produced radioactivity on the Earth. Handb Phys 46:551–612

    Google Scholar 

  5. Masarik J, Beer J (1999) Simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J Geophys Res 104(104):12099–12112

    Article  CAS  Google Scholar 

  6. Masarik J, Beer J (2009) An updated simulation of particle fluxes and cosmogenic nuclide production in the Earth’s atmosphere. J Geophys Res 114(104):12099–12112

    Google Scholar 

  7. Aldahan A, Hedfors J, Possnert G, Kulan A, Berggren AM, Söderström C (2008) Atmospheric impact on beryllium isotopes as solar activity proxy. Geophys Res Lett 35(21):184–189

    Article  Google Scholar 

  8. Aldahan A, Possnert G, El Saiy A, Abdelghany O (2013) Particle-bound 10Be from a low latitude arid region. J Radioanal Nucl Chem 299(3):1709–1713

    Article  Google Scholar 

  9. Heikkilä U, Beer J, Feichter J (2008) Meridional transport and deposition of atmospheric 10Be. At Chem Phys 8(2):16819–16849

    Google Scholar 

  10. Baroni M, Bard E, Petit JR, Magand O, Bourlès D (2011) Volcanic and solar activity, and atmospheric circulation influences on cosmogenic 10Be fallout at Vostok and Concordia (Antarctica) over the last 60 years. Geochim Cosmochim Acta 75(22):7132–7145

    Article  CAS  Google Scholar 

  11. Pedro JB, Mcconnell JR, Ommen TDV, Fink D, Curran MAJ, Smith AM, Simon KJ, Moy AD, Das SB (2012) Solar and climate influences on ice core 10Be records from Antarctica and Greenland during the neutron monitor era. Earth Planet Sci Lett s355–356:174–186

    Article  Google Scholar 

  12. Korschinek G, Bergmaier A, Faestermann T, Gerstmann UC, Knie K, Rugel G, Wallner A, Dillmann I, Dollinger G, Gostomski CLV (2010) A new value for the half-life of 10Be by heavy-ion elastic recoil detection and liquid scintillation counting. Nucl Instrum Methods Phys Res 268(2):187–191

    Article  CAS  Google Scholar 

  13. Graly JA, Bierman PR, Reusser LJ, Pavich MJ (2010) Meteoric 10Be in soil profiles—a global meta-analysis. Geochim Cosmochim Acta 74(23):6814–6829

    Article  CAS  Google Scholar 

  14. Graly JA, Reusser LJ, Bierman PR (2011) Short and long-term delivery rates of meteoric 10Be to terrestrial soils. Earth Planet Sci Lett 302(3):329–336

    Article  CAS  Google Scholar 

  15. Lal R, Fifield LK, Tims SG, Wasson RJ, Howe D (2012) A study of soil formation rates using 10Be in the wet-dry tropics of northern Australia. EPJ Web of Conf 35:01001

    Article  CAS  Google Scholar 

  16. Zollinger B, Alewell C, Kneisel C, Meusburger K, Brandová D, Kubik P, Schaller M, Ketterer M, Egli M (2014) The effect of permafrost on time-split soil erosion using radionuclides (137Cs, 239+240Pu, meteoric 10Be) and stable isotopes (δ13C) in the eastern Swiss Alps. J Soil Sediment 15(6):1400–1419

    Article  Google Scholar 

  17. Wang F, Michalski G, Seo J-H, Granger DE, Lifton N, Caffee M (2015) Beryllium-10 concentrations in the hyper-arid soils in the Atacama Desert, Chile: implications for arid soil formation rates and El Niño driven changes in Pliocene precipitation. Geochim Cosmochim Acta 160:227–242

    Article  CAS  Google Scholar 

  18. Field CV, Schmidt GA, Dorothy K, Colette S (2006) Modeling production and climate-related impacts on 10Be concentration in ice cores. J Geophys Res 111(D15):D15107

    Article  Google Scholar 

  19. Heikkilä U, Beer J, Feichter J (2008) Modeling cosmogenic radionuclides 10Be and 7Be during the Maunder minimum using the ECHAM5–HAM general circulation model. At Chem Phys 8(10):2797–2809

    Article  Google Scholar 

  20. Field CV, Schmidt GA (2009) Model-based constraints on interpreting 20th century trends in ice core 10Be. J Geophys Res 114:D12110

    Article  Google Scholar 

  21. Fifield LK, Wasson RJ, Pillans B, Stone JOH (2010) The longevity of hillslope soil in SE and NW Australia. Catena 81(1):32–42

    Article  CAS  Google Scholar 

  22. Egli M, Brandová D, Böhlert R, Favilli F, Kubik PW (2010) 10Be inventories in Alpine soils and their potential for dating land surfaces. Geomorphology 119(1–2):62–73

    Article  Google Scholar 

  23. Johnson MO, Mudd SM, Pillans B, Spooner NA, Keith Fifield L, Kirkby MJ, Gloor M (2014) Quantifying the rate and depth dependence of bioturbation based on optically-stimulated luminescence (OSL) dates and meteoric 10Be. Earth Surf Process Landf 39(9):1188–1196

    Article  Google Scholar 

  24. Chin M, Jacob DJ (1996) A global three-dimensional model of tropospheric sulfate. J Geophys Res 1011(13):18667–18690

    Article  Google Scholar 

  25. Koch D, Schmidt GA, Field CV (2006) Sulfur, sea salt, and radionuclide aerosols in GISS ModelE. J Geophys Res 111(D6):1003–1019

    Article  Google Scholar 

  26. Stier P, Feichter J, Kinne S, Kloster S, Vignati E, Wilson J, Ganzeveld L, Tegen I, Werner M, Balkanski Y (2005) The aerosol-climate model ECHAM5–HAM. At Chem Phys 5(5):1125–1156

    Article  CAS  Google Scholar 

  27. Pavich MJ, Brown L, Klein J, Middleton R (1984) 10Be accumulation in a soil chronosequence. Earth Planet Sci Lett 68(2):198–204

    Article  CAS  Google Scholar 

  28. Monaghan MC, Krishnaswami S, Turekian KK (1986) The global-average production rate of 10Be. Earth Planet Sci Lett 76(3–4):279–287

    Article  CAS  Google Scholar 

  29. Jungers MC, Bierman PR, Matmon A, Nichols K, Larsen J, Finkel R (2009) Tracing hillslope sediment production and transport with in situ and meteoric 10Be. J Geophys Res 114(F4):1–16

    Article  Google Scholar 

  30. Haussmann N, Aldahan A, Boelhouwers J, Possnert G (2010) 10Be application to soil development on Marion Island, southern Indian Ocean. Nucl Instrum Methods Phys Res B 268(7–8):1058–1061

    Article  CAS  Google Scholar 

  31. Maejima Y, Matsuzaki H, Higashi T (2005) Application of cosmogenic 10Be to dating soils on the raised coral reef terraces of Kikai Island, southwest Japan. Geoderma 126(3–4):389–399

    Article  CAS  Google Scholar 

  32. West N, Kirby E, Bierman P, Rood D (2011) Preliminary estimates of regolith generation and mobility in the Susquehanna Shale Hills Critical Zone Observatory, Pennsylvania, using meteoric 10Be. Appl Geochem 26:S146–S148

    Article  CAS  Google Scholar 

  33. Bacon AR, Richter DD, Bierman PR, Rood DH (2012) Coupling meteoric 10Be with pedogenic losses of 9Be to improve soil residence time estimates on an ancient North American interfluve. Geology 40(9):847–850

    Article  CAS  Google Scholar 

  34. Kulan A, Aldahan A, Possnert G (2007) Temporal and spatial variability of 7Be in aerosols and precipitation over Sweden. Department of Earth Sciences

  35. Aldahan A, Ye H, Possnert G (1999) Distribution of beryllium between solution and minerals (biotite and albite) under atmospheric conditions and variable pH. Chem Geol 156(1–4):209–229

    Article  CAS  Google Scholar 

  36. Tsai H, Maejima Y, Hseu Z-Y (2008) Meteoric 10Be dating of highly weathered soils from fluvial terraces in Taiwan. Quat Int 188(1):185–196

    Article  Google Scholar 

  37. Aldahan A, Possnert G (2003) Geomagnetic and climatic variability reflected by 10Be during the Quaternary and late Pliocene. Geophys Res Lett 30(6):1301

    Article  Google Scholar 

  38. Cardoso R, Muòiz M, Fagundes B, Ayub J, Dos Anjos RM, Cid AS, Velasco H, Lohaiza F (2011) 7Be content in rainfall and soil deposition in South American coastal ecosystems (2011 September 12). J Opt Technol 69(3):183–187

    Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the National Key R&D Program of China (Grant Nos. 2016YFC0402706, 2016YFC0402710), National Natural Science Foundation of China (Grant Nos. 41323001, 51539003), National Science Funds for Creative Research Groups of China (Grant No. 51421006), Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2014490411) and the Program of Dual Innovative Research Team in Jiangsu Province and the Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 20145027312). The 111 Project under Grant B08048, Ministry of Education and State Administration of Foreign Experts Affairs, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. B. Yu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Yu, Z.B., Aldahan, A. et al. Comparison of measurement and modeling results of the global 10Be flux in topsoil. J Radioanal Nucl Chem 311, 2039–2045 (2017). https://doi.org/10.1007/s10967-017-5171-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-017-5171-8

Keywords

Navigation