Skip to main content
Log in

Direct burn-up determination of fast reactor mixed oxide (MOX) fuel by preferential evaporation of interfering elements

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Spent fuel of uranium–plutonium mixed oxide (MOX) from sodium cooled Fast Breeder Test Reactor (FBTR) was analyzed for at.% burn-up by preferential evaporation method. A sequential pattern of analysis of fission monitor Nd and heavy elements, U and Pu provided an un-interfered isotopic composition. Concentrations of individual elements were determined by isotopic dilution mass spectrometry. The proposed method provides at.% burn-up with an uncertainty of about 4% (compared to ASTM method), is less time consuming, does not involve any chemical separation, reduction in radioactive waste and substantial reduction in the radiation exposure to analyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Standard Test Method for Atom Percent Fission in Uranium Plutonium Fuel (Neodymium-148 method) (1996) Designation, 321-96 Annual of ASTM Standards, 12.02

  2. ASTM Standards (1974) Standard test method for atom percent fission in Uranium and Plutonium fuels (Neodymium-148 method). E321-69, American Society for Testing Materials, Philadelphia

  3. Saha B, Bagyalakshmi R, Periaswami G, Kavimandan VD, Chitambar SA, Jain HC, Mathews CK (1977) Determination of nuclear fuel burn-up using mass spectrometric techniques. BARC Report-891

  4. Rein JE, Rider BF (1962) TID-17385, Burn-up determination of Nuclear Fuels, Progress Report, AEC Research and Development Report

  5. Sajimol R, Bera S, Nalini S, Sivaraman N, Joseph M, Kumar T (2016) Preferential removal of Sm by evaporation from Nd–Sm mixture and its application in direct burn-up determination of spent nuclear fuel. J Radioanal Nucl Chem 309:563–573

    CAS  Google Scholar 

  6. Saravanan T, Arunmuthu K, Lahiri BB, Bagavathiappan S, Venkiteswaran CN, Philip J, Divakar R, Joseph J, Jayakumar T (2015) Dimensional measurements on 112 GWd/t irradiated MOX fuel pins using X-ray radiography. Ann Nucl Energy 83:8–13

    Article  CAS  Google Scholar 

  7. Venkiteswaran CN, Jayaraj VV, Ojha BK, Anandaraj V, Padalakshmi M, Vinodkumar S, Karthik V, Vijaykumar R, Vijayaraghavan A, Divakar R, Johny T, Joseph J, Thirunavakkarasu S, Saravanan T, Philip J, Rao BPC, Kasiviswanathan KV, Jayakumar T (2014) Irradiation performance of PFBR MOX fuel after 112 GWd/t burn-up. J Nucl Mater 449:31–38

    Article  CAS  Google Scholar 

  8. Bera S, Balasubramanian R, Datta A, Sajimol R, Nalini S, Lakshmi Narasimhan TS, Antony MP, Sivaraman N, Nagarajan K, Vasudeva Rao PR (2013) Burn-up measurements on dissolver solution of mixed oxide fuel using HPLC–mass spectrometric method. Int J Anal Mass Spec Chrom 1:55–60

    Google Scholar 

  9. Sajimol R, Manoravi P, Bera S, Joseph M (2015) Effect of laser parameters on the measurement of U/Nd ratio using pulsed laser deposition followed by isotopic dilution mass spectrometry. Int J Mass Spec 387:51–55

    Article  CAS  Google Scholar 

  10. Heumann KG (1988) Isotope dilution mass spectrometry in inorganic mass spectrometry. In: Gijbels R, Van Greiken R (eds) Adams F. Wiley, New York, pp 301–376

    Google Scholar 

  11. Horrocks Donald L (1974) Applications of liquid scintillation counting. Academic Press, New York

    Google Scholar 

  12. Alamelu D, Aggarwal SK (2016) Determining the age and history of plutonium using isotope correlations and experimentally determined data on isotopic abundances of plutonium and 241Am. J Radioanal Nucl Chem 307:277–284

    Article  CAS  Google Scholar 

  13. Guillaumont R (2003) Update on the chemical thermodynamics of Uranium, Neptunium, Plutonium, Americium and Technitium, Nuclear Energy Agency Organization for Economic Co-operation and Developement

  14. Edelstein NM, Navratil JD, Schulz WW (1984) Americium and curium chemistry and technology. D. Reidel Publishing Company, Holland

    Google Scholar 

  15. Bradbury MH, Ohse RW (1979) High temperature vapor pressure of pure Plutonium. J Chem Phys 70:2310–2314

    Article  CAS  Google Scholar 

  16. Erway ND, Simpson OC (1950) The vapour pressure of Americium. J Chem Phys 18:953–960

    Article  CAS  Google Scholar 

  17. Rauh EG, Thorn RJ (1954) Vapor pressure of uranium. J Chem Phys 22:1414–1418

    Article  CAS  Google Scholar 

  18. Roboz John (1968) Introduction to mass spectrometry—instrumentation and techniques. Wiley, New York, pp 512–513

    Google Scholar 

  19. Crouch EAC (1977) Atomic data and nuclear data tables: fission product yields from neutron induced fission. Academic Press, New York/London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Joseph.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sajimol, R., Bera, S., Sivaraman, N. et al. Direct burn-up determination of fast reactor mixed oxide (MOX) fuel by preferential evaporation of interfering elements. J Radioanal Nucl Chem 311, 1593–1603 (2017). https://doi.org/10.1007/s10967-016-5152-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5152-3

Keywords

Navigation