Skip to main content
Log in

A novel theranostic nanobioconjugate: 125/131I labeled phenylalanine conjugated boron nitride nanotubes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Here we report the synthesis of boron nitride nanotubes (BNNTs) via a chemical vapor deposition method, as potential agents for boron neutron capture therapy. BNNTs were functionalized with PAMAM[G-2] dendrimer and then, conjugated with l-Phe using EDC/NHS. After that, BNNTs were radiolabeled with 125/131I, which are commonly used for both therapy and diagnosis in clinical and pre-clinical studies. BNNTs were radiolabeled with a maximum yield with 125/131I in compared with 4-borono-l-phenyalanine which is currently used as a commercial drug. Radiolabeling parameters were optimized with thin layer radiochromatography and high performance liquid radiochromatography. BNNTs are promising nanobioconjugates as new theranostic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Chen XY, Gambhir SS, Cheon J (2011) Theranostic nanomedicine. Acc Chem Res 44(10):841

    Article  CAS  Google Scholar 

  2. Jokerst JV, Gambhir SS (2011) Molecular imaging with theranostic nanoparticles. Acc Chem Res 44(10):1050–1060

    Article  CAS  Google Scholar 

  3. Bhojani MS, Van Dort M, Rehemtulla A, Ross BD (2010) Targeted imaging and therapy of brain cancer using theranostic nanoparticles. Mol Pharm 7(6):1921–1929

    Article  CAS  Google Scholar 

  4. Chen X, Wu P, Rousseas M, Okawa D, Gartner Z, Zettl A, Bertozzi CR (2009) Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J Am Chem Soc 131:890–891

    Article  CAS  Google Scholar 

  5. Zhang WS, Zheng JG, Li WF, Geng DY, Zhang ZD (2009) Synthesize and characterization of hollow boron-nitride nanocages. J Nanomater. doi:10.1155/2009/264026

    Google Scholar 

  6. Zhi C, Bando Y, Tan C, Golberg D (2005) Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun 135:67–70

    Article  CAS  Google Scholar 

  7. Oku T, Hiraga K, Matsuda T, Hirai T, Hirabayashi M (2003) Formation and structures of multiply-twinned nanoparticles with fivefold symmetry in chemical vapor deposited boron nitride. Diam Relat Mater 12:1918–1926

    Article  CAS  Google Scholar 

  8. Tang C, Bando Y, Sato T, Kurashima K (2002) A novel precursor for synthesis of pure boron nitride nanotubes. Chem Commun 30(12):1290–1291

    Article  Google Scholar 

  9. Cheng L, Hu Q, Cheng L, Hu W, Xu M, Zhu Y, Zhang L, Chen D (2015) Construction and evaluation of PAMAM–DOX conjugates with superior tumor recognition and intracellular acid-triggered drug release properties. Colloids Surf B 136:37–45

    Article  CAS  Google Scholar 

  10. Jain K, Kesharwani P, Gupta U, Jain NK (2010) Dendrimer toxicity: let’s meet the challenge. Int J Pharm 394:122–142

    Article  CAS  Google Scholar 

  11. Hossain SU, Kambhampati SP, Mishra MK, Lesniak WG, Zhang F, Kannan RM (2013) Enhancing the efficacy of Ara–C through conjugation with PAMAM dendrimer and linear PEG: a comparative study. Biomacromolecules 14:801–810

    Article  Google Scholar 

  12. Shukla S, Wu G, Chatterjee M, Yang W, Sekido M, Diop LA, Muller R, Sudimack JJ, Lee RJ, Barth RF, Tjarks W (2003) Synthesis and biological evaluation of folate receptor-targeted boronated PAMAM dendrimers as potential agents for neutron capture therapy. Bioconjug Chem 14:158–167

    Article  CAS  Google Scholar 

  13. Barth RF, Coderre JA, Graça Vicente MH, Blue TE (2005) Boron neutron capture therapy of cancer: current status and future prospects. Clin Cancer Res 11:3987–4002

    Article  CAS  Google Scholar 

  14. Chen X, Wu P, Rousseas M, Okawa D, Gartner Z, Zettl A, Bertozz CR (2009) Boron nitride nanotubes are noncytotoxic and can be functionalized for interaction with proteins and cells. J Am Chem Soc 131:890–891

    Article  CAS  Google Scholar 

  15. Heister E, Neves V, Tilmaciu C, Lipert K, Sanz Beltran V, Coley HM, Silva SRP, McFadden J (2009) Triple functionalisation of single-walled carbon nanotubes with doxorubicin, a monoclonal antibody, and a fluorescent marker for targeted cancer therapy. Carbon 47:2152–2160

    Article  CAS  Google Scholar 

  16. Ozdemir D, Unak P (1994) Study on labeling conditions of I-125 synkavit by the iodogen method. J Radioanal Nucl Chem Lett 187(4):277–283

    Article  Google Scholar 

  17. Akin M, Bongartz R, Walter JG, Odaci Demirkol D, Stahl F, Timur S, Scheper T (2012) PAMAM-functionalized water soluble quantum dots for cancer cell targeting. J Mater Chem 22(23):11529–11536

    Article  CAS  Google Scholar 

  18. Unak T, Akgun Z, Yıldırım Y, Duman Y, Erenel G (2001) Self-iodination of iodogen. Appl Radiat Isot 54(5):749–752

    Article  CAS  Google Scholar 

  19. Medine IE, Unak P, Sakarya S, Toksoz F (2010) Enzymatic synthesis of uracil glucuronide, labeling with 125/131I and in vitro evaluation on adenocarcinoma cells. Cancer Biother Radiopharm 25(3):335–344

    Article  CAS  Google Scholar 

  20. Tekin V, Biber Muftuler FZ, Kozgus Guldu O, Yurt Kilcar A, Medine EI, Yavuz M, Unak P, Timur S (2014) Biological affinity evaluation of Lawsonia inermis origin Lawsone compound and its radioiodinated form via in vitro methods. J Radioanal Nucl Chem 303(1):701–707

    Article  Google Scholar 

  21. Zhi C, Bando Y, Tan C, Golberg D (2005) Effective precursor for high yield synthesis of pure BN nanotubes. Solid State Commun 13(5):67–70

    Article  Google Scholar 

  22. Xie SY, Wang W, Shiral Fernando KA, Wang X, Lin Y, Sun YP (2005) Solubilization of boron nitride nanotubes. Chem Commun. doi:10.1039/B505330G

    Google Scholar 

  23. Mills WJ, Sutton CH, Baize MW, Todd LJ (1991) Boron analogues of valine, leucine, isoleucine, and phenylalanine: syntheses of amine-alkyl (N ethylcarbamoyl) boranes. Inorg Chem 30:1046–1052

    Article  CAS  Google Scholar 

  24. Wang J, Lee CH, Bando Y, Golberg D, Yap YK (2009) Multiwalled boron nitride nanotubes: growth, properties, and applications. In: Yap YK (ed) B-C-N nanotubes and related nanostructures. Springer, New York, pp 23–44

    Chapter  Google Scholar 

  25. Pecce R, Scolamiero E, Ingenito L, Parenti G, Ruoppolo M (2013) Optimization of an HPLC method for phenylalanine and tyrosine quantization in dried blood spot. Clin Biochem 46:1892–1895

    Article  CAS  Google Scholar 

  26. Yu J, Qin L, Hao Y, Kuang S, Bai X, Chong YM, Zhang W, Wang E (2010) Vertically aligned boron nitride nanosheets: chemical vapor synthesis, ultraviolet light emission, and superhydrophobicity. ACS Nano 4(1):414–422

    Article  CAS  Google Scholar 

  27. Teraoa T, Bandoa Y, Mitome M, Kurashima K, Zhi CY, Tang CC, Golberg D (2008) Effective synthesis of surface-modified boron nitride nanotubes and related nanostructures and their hydrogen uptake. Physica E 40:2551–2555

    Article  Google Scholar 

  28. Wang XZ, Wu Q, Hu Z, Chen Y (2007) Template-directed synthesis of boron nitride nanotube arrays by microwave plasma chemical reaction. Electrochim Acta 52:2841–2844

    Article  CAS  Google Scholar 

  29. Guo L, Singh RN (2009) Catalytic growth of boron nitride nanotubes using gas precursors. Physica E 41:448–453

    Article  CAS  Google Scholar 

  30. Dischino DD, Welch MJ, Kilbourn MA, Raichie ME (1983) Relationship between lipophilicity and brain extraction of C-11-labeled radiopharmaceuticals. J Nucl Med 24:1030–1038

    CAS  Google Scholar 

  31. Liu B, Qi W, Tian L, Li Z, Miao G, An W, Liu D, Lin J, Zhang X, Wu W (2015) In vivo biodistribution and toxicity of highly soluble PEG-coated boron nitride in mice. Nanoscale Res Lett 10:478–484

    Article  Google Scholar 

  32. Unak P, Cetinkaya B (2005) Absorbed dose estimates at the cellular level for (131)I. Appl Radiat Isot 62(6):861–869

    Article  CAS  Google Scholar 

  33. Braghirolli AMS, Waissmann W, da Silva JB (2014) Production of iodine-124 and its applications in nuclear medicine. Appl Radiat Isot 90:138–148

    Article  CAS  Google Scholar 

  34. Genadya AR, Nakamura H (2010) Undecahydro-closo-dodecaborates as good leaving groups in organic synthesis: generation of substituted styrenes via elimination of arylethyl dodecaborates. Org Biomol Chem 8:4427–4435

    Article  Google Scholar 

  35. Barth RF, Vicente MGH, Harling OK, Kiger WS, Riley KJ, Binns PJ, Wagner FM, Suzuki M, Aihara T, Kato I, Kawabata S (2012) Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat Oncol 7:146

    Article  Google Scholar 

  36. El-Sayed M, Ginski M, Rhodes C, Ghandehari H (2002) Transepithelial transport of poly(amidoamine) dendrimers across Caco-2 cell monolayers. J Control Release 81(3):355–365

    Article  CAS  Google Scholar 

  37. El-Sayed M, Ginski M, Rhodes C, Ghandehari H (2003) Influence of surface chemistry of poly(amidoamine) dendrimers on caco-2 cell monolayers. J Bioact Compat Polym 18(1):7–22

    Article  CAS  Google Scholar 

  38. Jevprasesphant R, Penny J, Jalal R, Attwood D, McKeown NB, D’Emanuele A (2003) The influence of surface modification on the cytotoxicity of PAMAM dendrimers. Int J Pharm 252:263–266

    Article  CAS  Google Scholar 

  39. Kitchens KM, El-Sayed MEH, Ghandehari H (2005) Transepithelial and endothelial transport of poly (amidoamine) dendrimers. Adv Drug Deliv Rev 57(15):2163–2176

    Article  CAS  Google Scholar 

  40. Kolhatkar RB, Kitchens KM, Swaan PW, Ghandehari H (2007) Surface acetylation of polyamidoamine (PAMAM) dendrimers decreases cytotoxicity while maintaining membrane permeability. Bioconjug Chem 18(6):2054–2060

    Article  CAS  Google Scholar 

  41. Saovapakhiran A, D’Emanuele A, Attwood D, Penny J (2009) Surface modification of PAMAM dendrimers modulates the mechanism of cellular internalization. Bioconjug Chem 20(4):693–701

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to the Ege University Scientific Research Fund for the financial support through the project number 2015 NBE 002. Associate Professor Arzu Turkler Ege and Associate Professor Mehmet Ayvacikli from Celal Bayar University are acknowledged for their valuable helps during the synthesis step of BNNTs. Dr Hasan Demiroglu from Celal Bayar University is acknowledged for his helps during FTIR measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Perihan Unak.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guldu, O.K., Unak, P. & Timur, S. A novel theranostic nanobioconjugate: 125/131I labeled phenylalanine conjugated boron nitride nanotubes. J Radioanal Nucl Chem 311, 1751–1762 (2017). https://doi.org/10.1007/s10967-016-5127-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5127-4

Keywords

Navigation