Skip to main content
Log in

Dissolution and characterisation studies on U–Zr and U–Pu–Zr alloys in nitric acid medium

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Dissolution of metallic alloys, U–Zr and U–Pu–Zr has been investigated in HNO3 media. An electro oxidative dissolution technique was also examined. Explosive nature of metallic alloys during dissolution in nitric acid has been investigated. A method has been developed for the determination of zirconium in the presence of uranium and plutonium using a spectrophotometric technique. The influence of HNO3, uranium and plutonium during the estimation of Zr has been studied. Plutonium interferes in the estimation of Zr and it can be avoided by employing ascorbic acid. The method was employed for the estimation of Zr in samples generated during dissolution of Zr containing alloy fuels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kelman L, Savage H, Walter C (1967) Status of metallic plutonium fast power-breeder fuels. In: Kay, AE Waldron, MB (eds.) of Plutonium 1965, pp 458–484 . Proceedings of the Third International Conference on Plutonium, London, November 22–26, 1965. New York, Barnes and Noble, Inc., 1. Argonne National Lab., III, Lemont

  2. Beck W, Brown F, Koprowski B (1967) Performance of advanced U–Pu–Zr alloy fuel elements under fast-reactor conditions. Argonne National Lab., III, Lemont

    Google Scholar 

  3. Crawford DC, Porter DL, Hayes SL (2007) Fuels for sodium-cooled fast reactors: US perspective. J Nucl Mater 371:202–231

    Article  CAS  Google Scholar 

  4. Larsen RP (1959) Dissolution of uranium metal and its alloys. Anal Chem 31:545–549

    Article  CAS  Google Scholar 

  5. Laue C, Gates-Anderson D, Fitch T (2004) Dissolution of metallic uranium and its alloys. J Radioanal Nucl Chem 261:709–717

    Article  CAS  Google Scholar 

  6. Robert R, Choppin G, Wild J (1986) The radiochemistry of uranium. Neptunium and plutonium—an updating, NAS-NS 3063

  7. Rodrigues L, Falleiros N, De Forbicini OC (2002) Kinetics of the electrodissolution of metallic uranium. J Radioanal Nucl Chem 253:511–515

    Article  CAS  Google Scholar 

  8. Nikitin S, Maslennikov A (2014) Electrochemical properties and dissolution of U-5 wt% Zr Alloy in HNO3 solutions. Radiochemistry 56:241–246

    Article  CAS  Google Scholar 

  9. Bray L, Ryan J, Wheelwright E (1985) Development of the CEPOD process for dissolving plutonium oxide and leaching plutonium from scrap or wastes. Pacific Northwest Labs, Richland

    Google Scholar 

  10. Harmon H (1975) Evaluation of fluoride, cerium(IV) and cerium(IV) fluoride mixtures as dissolution promoters for PuO2 scrap recovery processes. US-ERDA Report. DP-1382. EI du Pont de Nemours & Co., Savannah River Laboratory, Aiken, South Carolina

  11. Palamalai A, Rajan S, Chinnusamy A (1991) Development of an electro-oxidative dissolution technique for fast reactor carbide fuels. Radiochim Acta 55:29–36

    Article  CAS  Google Scholar 

  12. Christian JD Aqueous reprocessing of U–Pu–Zr metal fuels–dissolution considerations. In, 3122 Homestead Lane, Idaho Falls

  13. Larsen RP, Shor RS, Feder HM (1954) A study of the explosive properties of uranium–zirconium alloys. Argonne National Lab, Lemont

    Book  Google Scholar 

  14. Martin F, Field B (1958) The reactions of zirconium and zirconium based alloys with nitric and nitric-hydrofluoric acids. Part I. hazardous aspects. Part II. dissolution rates. United Kingdom Atomic Energy Authority. Research Group. Atomic Energy Research Establishment, Harwell, Berks, England

  15. Roth H (1952) Explosions occurring during chemical etching Or pickling of uranium–zirconium alloys. Massachusetts Inst. of Tech., Cambridge. Metallurgical Project

  16. Hurford W (1953) Explosions involving pickling of zirconium and uranium Alloys. Westinghouse Electric Corp. Atomic Power Div, Pittsburgh

    Book  Google Scholar 

  17. Gens T (1961) Zircex and modified zirflex processes for dissolution of 8% U-91% Zr-1% H TRIGA reactor fuel. Oak Ridge National Lab, Oak Ridge

    Google Scholar 

  18. Gens T (1963) Continuous dissolution of zirconium reactor fuels in titanium equipment: laboratory demonstration. Oak Ridge National Lab, Oak Ridge

    Book  Google Scholar 

  19. Flagg JF, Liebhafsky HA, Winslow EH (1949) A spectrophotometric study of three zirconium lakes. J Am Chem Soc 71:3630–3632

    Article  CAS  Google Scholar 

  20. Oesper RE, Klingenberg JJ (1949) Use of glycolic acid derivatives in determination of zirconium. Anal Chem 21:1509–1511

    Article  CAS  Google Scholar 

  21. Larsen R, Ross L, Kesser G (1960) Spectrophotometric determination of zirconium in uranium alloys of the fission elements. Talanta 4:108–114

    Article  CAS  Google Scholar 

  22. Rafiq M, Rules CL, Elving PJ (1963) Determination of small amounts of zirconium—I: gravimetric procedures using mandelic acid and its derivatives. Talanta 10:696–701

    Article  CAS  Google Scholar 

  23. Evans H, Hrobar A, Patterson J (1960) Determination of zirconium in uranium fissium alloys. Anal Chem 32:481–483

    Article  CAS  Google Scholar 

  24. Buchanan R, Hughes J, Bloomquist C (1960) The colorimetric determination of zirconium in plutonium–uranium–‘fissium’alloys. Talanta 6:100–104

    CAS  Google Scholar 

  25. Cheng K (1959) Analytical applications of xylenol orange—I: determination of traces of zirconium. Talanta 2:61–66

    Article  CAS  Google Scholar 

  26. Kaity S, Banerjee J, Nair M (2012) Microstructural and thermophysical properties of U–6wt.% Zr alloy for fast reactor application. J Nucl Mater 427:1–11

    Article  CAS  Google Scholar 

  27. Seidel BR, Tracy DB, Griffiths V (1991) Apparatus for injection casting metallic nuclear energy fuel rods. In: Google Patents

  28. Gopinath N (2008) Chemical characterization of nuclear fuels. In: Tomar BS (ed) IANCAS, Mumbai, p 156–168

  29. Agarwal RP, Moreno EC (1971) Stability constants of aluminium fluoride complexes. Talanta 18:873–880

    Article  CAS  Google Scholar 

  30. Chaudhuri N, Sawant R, Sood D (1999) A critical review on the stability constants of the fluoride complexes of actinides in aqueous solution and their correlation with fundamental properties of the ions. J Radioanal Nucl Chem 240:993–1011

    Article  CAS  Google Scholar 

  31. Mathur J, Murali M, Krishna MB (1996) Recovery of neptunium from highly radioactive waste solutions of PUREX origin using CMPO. J Radioanal Nucl Chem 213:419–429

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Sivaraman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sreenivasulu, B., Suresh, A., Sivaraman, N. et al. Dissolution and characterisation studies on U–Zr and U–Pu–Zr alloys in nitric acid medium. J Radioanal Nucl Chem 311, 789–800 (2017). https://doi.org/10.1007/s10967-016-5109-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5109-6

Keywords

Navigation