Skip to main content
Log in

Protection of radiation induced DNA damage by a newly developed molybdenum complex

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Ionizing radiation, especially gamma (γ) radiation, is assumed to be very effective for DNA damage due to formation of free radicals. DNA damage and inhibition of DNA damage produced on irradiation with 60Co gamma source were characterized by fluorescence spectrometry. Reduced form of glutathione (GSH) and its novel molybdenum glutathione (MoG) complex were employed for the protection of γ-radiation induced DNA damage. The spectroscopic results of the present study showed that the MoG complex is more efficient in protecting the double stranded DNA in vitro compared to reduced form of GSH.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jamali MAA, Batist G, Lehnert S (1992) Radiation-induced damage to DNA in drug and radiation-resistant sublines of a human breast cancer cell line. Radiat Res 129:37–42

    Article  Google Scholar 

  2. Boloor KK, Kamat JP, Devasagayam TP (2000) Chlorophyllin as a protector of mitochondrial membranes against gamma-radiation and photosensitization. Toxicol 155:63–71

    Article  CAS  Google Scholar 

  3. Santivasi WL, Xia F (2014) Ionizing radiation-induced DNA damage, response, and repair. Antioxid Redox Signal 21:251–259

    Article  CAS  Google Scholar 

  4. Sankaranarayanan K, Taleei R, Rahmanian S, Nikjoo H (2013) Ionizing radiation and genetic risks. XVII. Formation mechanisms underlying naturally occurring DNA deletions in the human genome and their potential relevance for bridging the gap between induced DNA double-strand breaks and deletions in irradiated germ cells. Mutat Res 753:114–130

    Article  CAS  Google Scholar 

  5. Sophie LC (2011) Water radiolysis: influence of oxide surfaces on H2 production under ionizing radiation. Water 3:235–253

    Article  Google Scholar 

  6. Velpula N, Ugrappa S, Kodangal S (2013) A role of radioprotective agents in cancer therapeutics: a review. Int J Basic Clin Pharmacol 2:677–682

    Article  Google Scholar 

  7. Demple B, Harrison L (1994) Repair of oxidative damage to DNA. Annu Rev Biochem 63:915–948

    Article  CAS  Google Scholar 

  8. Kumar SS, Chaubey RC, Devasagayam TPA, Priyadarsini KI, Chauhan PS (1999) Inhibition of radiation-induced DNA damage in plasmid pBR322 by chlorophyllin and possible mechanism (s) of action. Mutat Res 425:71–79

    Article  CAS  Google Scholar 

  9. Rajagopalan R, Wani K, Huilgol NG, Kagiya TV, Nair CK (2002) Inhibition of gamma radiation Induced DNA damage in plasmid pBR322 by TMG, a water-soluble derivative of vitamin E. J Radiat Res 43:153–159

    Article  CAS  Google Scholar 

  10. Hutchinson F (1985) Chemical changes induced in DNA by ionizing radiation. Prog Nucl Acid Res Mol Biol 32:115–154

    Article  CAS  Google Scholar 

  11. Dizdaroglu M (1992) Oxidative damage to DNA in mammalian chromatin. Mutat Res 275:331–342

    Article  CAS  Google Scholar 

  12. Sonntag CV (2005) Free radical induced DNA damage and its repair, a chemical perspective. Springer, Berlin

    Google Scholar 

  13. Venkatachalam SR, Chattopadhyay S (2005) Natural radioprotective agents: an overview. Curr Org Chem 9:389–404

    Article  CAS  Google Scholar 

  14. Shimizu T, Iwanaya M, Yasunaga A, Urata Y, Goto S, Shibata S, Kondo T (1998) Protective role of glutathione synthesis on radiation-induced DNA damage in rabbit brain. Cell Mol Neurobiol 18:299–310

    Article  CAS  Google Scholar 

  15. Sert C, Celik MS, Akdag Z, Ketani MA, Nergiz Y (2000) The radioprotective effect of vitamins C, E and vitamin E+ glutathione on the small intestine and the thyroid gland in rats irradiated with X-rays. Turk J Med Sci 30:417–426

    CAS  Google Scholar 

  16. Arima P, Shiba R (1992) Radioprotecyive effect of exogenous glutathione on rat parotid glands. Int J Radiat Biol 61:695–702

    Article  CAS  Google Scholar 

  17. Badiello R, Ceschel GC, Esposito B (1998) Radioprotective effects of glutathione on molecular systems. J Radioanal Nucl Chem 229:149–152

    Article  CAS  Google Scholar 

  18. Dannenmann B, Lehle S, Hildebrand DG, Kübler A, Grondona P, Schmid V, Holzer K, Fröschl M, Essmann F, Rothfuss O, Osthoff KS (2015) High glutathione and glutathione peroxidase-2 Levels mediate cell-type-specific DNA damage protection in human induced pluripotent stem cells. Stem Cell Rep 4:886–898

    Article  CAS  Google Scholar 

  19. Chatterjee A (2013) Reduced glutathione: a radioprotector or a modulator of DNA-repair activity. Nutrients 5:525–542

    Article  CAS  Google Scholar 

  20. Kim JK, Kim JH, Yoon YD (2003) Evaluation of caffeine as a radioprotector in whole-body irradiated male mice. In Vivo 17:197–200

    CAS  Google Scholar 

  21. Hussein MR, Abu-Dief EE, El-Ghait ATA, Adly MA, Abdelraheem MH (2006) Morphological evaluation of the radioprotective effects of melatonin against X-ray-induced early and acute testis damage in Albino rats: an animal model. Int J Exp Pathol 87(3):237–250

    Article  Google Scholar 

  22. Taysi S, Koc M, Buyukokuroglu ME, Altinkaynak K, Sahin Y (2003) Melatonin reduces lipid peroxidation and nitric oxide during irradiation-induced oxidative injury in the rat liver. J Pineal Res 34:173–177

    Article  CAS  Google Scholar 

  23. Paul SS, Selim M, Saha A, Mukherjea KK (2014) Synthesis and structural characterization of dioxomolybdenum and dioxotungsten hydroxamato complexes and their function in the protection of radiation induced DNA. Dalton Trans 43:2835–2848

    Article  CAS  Google Scholar 

  24. L’vov NP, Nosikov AN, Antipov AN (2002) Tungsten-containing enzymes. Biochem 67:196–200

    Google Scholar 

  25. Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460:839–847

    Article  CAS  Google Scholar 

  26. Alikulov ZA, L’vov NP, Burikhanov SS, Kretovich VL (1980) Isolation of cofactor common to molybdenum-containing enzymes: nitrate reductase from lupine bacteroids and xanthine oxidase from milk. Biol Bull Acad Sci 7:379–384

    CAS  Google Scholar 

  27. Suh D (1999) Cooperative binding interaction of ethidium with allosteric DNA. Exp Mol Med 31:151–158

    Article  CAS  Google Scholar 

  28. Reichmann MF, Rice SA, Thomas CA, Doty P (1954) A further examination of the molecular weight and size of desoxypentose nucleic acid. J Am Chem Soc 76:3047–3053

    Article  CAS  Google Scholar 

  29. Selim M, Saha A, Mukherjea KK (2012) Synthesis, characterization, and DNA binding of the biologically relevant novel cationic molybdenum(VI)–glutathione complex [Mo(GS)(Cl)(H2O)]Cl2. Monat Chem 143:227–233

    Article  CAS  Google Scholar 

  30. Held KD, Biaglow JE (1994) Mechanisms for the oxygen radical-mediated toxicity of various thiol-containing compounds in cultured mammalian cells. Radiat Res 139:15–23

    Article  CAS  Google Scholar 

  31. Maisin BJR (1998) Bacq and Alexander award lecture chemical radioprotection: past, present and future prospects. Int J Radiat Biol 73:443–450

    Article  CAS  Google Scholar 

  32. Maurya DK, Adhikari S, Nair CKK, Devasagayam TPA (2007) DNA protective properties of vanillin against γ-radiation under different conditions: Possible mechanisms. Mutat Res 634:69–80

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to UGC-DAE-CSR, Kolkata Centre for financial assistance to KKM in the form of Major Research Projects (UGC-DAE-CSR-KC/CRS/09/RC03/1456 and UGC-DAE-CSR-KC/CRS/13/RC05/088) where MS and SB are project fellows respectively. Authors also thank Jadavpur University for providing necessary facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalyan K. Mukherjea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Selim, M., Saha, A. & Mukherjea, K.K. Protection of radiation induced DNA damage by a newly developed molybdenum complex. J Radioanal Nucl Chem 311, 189–193 (2017). https://doi.org/10.1007/s10967-016-5061-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5061-5

Keywords

Navigation