Skip to main content
Log in

The effect of Al concentration on thermodynamic properties of Nd and U in Ga–Al-based alloys and the separation factor of Nd/U couple in a “molten salt-liquid metal system”

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Electrochemical behavior of neodymium and uranium in a molten Nd(U)–(Ga–xAl)/3LiCl–2KCl system (x = 1.5; 5.0 and 20.0 wt% Al) between 723 and 823 K was studied. Temperature dependencies of apparent standard potentials of Nd–(Ga–Al) and U–(Ga–Al) alloys were determined versus Cl/Cl2 reference electrode. Neodymium and uranium activity coefficients and Nd/U separation factor were calculated. Partial excess free Gibbs energy, partial enthalpy of mixing and partial excess entropy of Nd–(Ga–Al) and U–(Ga–Al) alloys were estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Koyama T, Iizuka M, Tanaka H, Tokiwai M, Shoji Y, Fujita R, Kobayashi T (1997) An experimental study of molten salt electrorefining of uranium using solid iron cathode and liquid cadmium cathode for development of pyrometallurgical reprocessing. J Nucl Sci Technol 34:384–393

    Article  CAS  Google Scholar 

  2. Pigford TH (1990) Actinide burning and waste disposal, an invited review for the MIT International Conference on the Next Generation of Nuclear Power Technology, Department of Nuclear Engineering, University of California, Berkeley, CA, UCB-NE-4176, Rev. 1 (October 1990)

  3. Iizuka M, Uozumi K, Inoue T, Iwai T, Shirai O, Arai Y (2000) Development of plutonium recovery process by molten salt electrorefining with liquid cadmium cathode, 6th Information Exchange Meeting on Actinide and Fission Product P&T, Madrid

  4. Laidler JJ (1993) The IFR pyroprocessing for high-level waste minimization. Trans Am Nucl Soc 68:1993

    Google Scholar 

  5. Sakamura Y, Inoue T, Shirai O, Iwai T, Arai Y, Suzuki Y (1999) Studies on pyrochemical reprocessing for metallic and nitride fuels: behaviour of transuranium elements in LiCl–KCl/liquid metal systems. Proceedings of the International Conference on Future Nuclear Systems, GLOBAL’99

  6. Smirnov MV (1973) Electrodnye potentsialy v rasplavlennykh khloridakh (Electrode potentials in molten chlorides). Nauka, Moscow

    Google Scholar 

  7. Bermejo RM, Gómez J, Medina J, Martínez MA, Castrillejo Y (2006) The electrochemistry of gadolinium in the eutectic LiCl–KCl on W and Al electrodes. J Electroanal Chem 588:253–266

    Article  CAS  Google Scholar 

  8. Castrillejo Y, Bermejo RM, Martínez MA, Barrado E, Díaz Arocas P (2007) Application of electrochemical techniques in pyrochemical processes—electrochemical behaviour of rare earths at W, Cd, Bi and Al electrodes. J Nucl Mater 360:32–42

    Article  CAS  Google Scholar 

  9. Castrillejo Y, Bermejo RM, Barrado E, Martínez MA (2006) Electrochemical behaviour of erbium in the eutectic LiCl–KCl at W and Al electrodes. Electrochim Acta 51:1941–1951

    Article  CAS  Google Scholar 

  10. Castrillejo Y, Bermejo RM, Barrado A, Pardo R, Barrado E, Martínez MA (2005) Electrochemical behaviour of dysprosium in the eutectic LiCl–KCl at W and Al electrodes. Electrochim Acta 50:2047–2057

    Article  CAS  Google Scholar 

  11. Castrillejo Y, Bermejo RM, Díaz Arocas P, Martínez MA, Barrado E (2005) Electrochemical behaviour of praseodymium (III) in molten chlorides. J Electroanal Chem 575:61–74

    Article  CAS  Google Scholar 

  12. Bermejo RM, Barrado E, Martínez MA, Castrillejo Y (2008) Electrodeposition of Lu on W and Al electrodes: electrochemical formation of Lu–Al alloys and oxoacidity reactions of Lu(III) in the eutectic LiCl–KCl. J Electroanal Chem 617:85–100

    Article  CAS  Google Scholar 

  13. Bermejo RM, Gómez J, Martínez MA, Barrado E, Castrillejo Y (2008) Electrochemistry of terbium in the eutectic LiCl–KCl. Electrochim Acta 53:5106–5112

    Article  CAS  Google Scholar 

  14. Bermejo RM, Castrillejo Y (2007) Cathodic behavior of europium (III) on glassy carbon, electrochemical formation of Al4Eu, and oxoacidity reactions in the eutectic LiCl–KCl. J Electroanal Chem 603:81–95

    Article  CAS  Google Scholar 

  15. Smolenski V, Novoselova A, Osipenko A, Kormilytsin M (2009) Electrochemical and thermodynamic properties of ytterbium trichloride in molten caesium chloride. J Nucl Mater 385:184–185

    Article  CAS  Google Scholar 

  16. Smolenski V, Novoselova A, Bovet A, Osipenko A, Kormilytsin M (2009) The influence of electrode material nature on the mechanism of cathodic reduction of ytterbium (III) ions in fused NaCl–KCl–CsCl eutectic. J Electroanal Chem 633:291–296

    Article  CAS  Google Scholar 

  17. Smolenski V, Novoselova A (2012) Electrochemistry of redox potential of the couple Tm3+/Tm2+ and the formation of a Tm–Al alloy in fused NaCl–2CsCl eutectic. Electrochim Acta 63:179–184

    Article  CAS  Google Scholar 

  18. Novoselova AV, Smolenskii VV (2009) Redox reaction Yb(III) + ē = Yb(II) in a molten eutectic mixture NaCl–2CsCl. Russ J Appl Chem 82:2133–2138

    Article  CAS  Google Scholar 

  19. Novoselova AV, Smolenskii VV (2010) Electrochemical and thermodynamic properties of thulium trichloride in a molten NaCl–KCl–CsCl eutectic. Russ J Appl Chem 83:1944–1947

    Article  CAS  Google Scholar 

  20. Novoselova A, Smolenski V (2013) Electrochemical behavior of neodymium compounds in molten chlorides. Electrochim Acta 87:657–662

    Article  CAS  Google Scholar 

  21. Smolenski V, Novoselova A, Osipenko A, Kormilytsin M (2011) Electrochemistry of Tm(III) and Yb(III) in molten salts. Mass transfer: advanced aspects. InTech, Rijeka, pp 263–284

    Google Scholar 

  22. Smolenski V, Novoselova A, Osipenko A, Kormilytsin M, Luk’yanova Y (2014) Thermodynamics of separation of uranium from neodymium between the gallium–indium liquid alloy and the LiCl–KCl molten salt phases. Electrochim Acta 133:354–358

    Article  CAS  Google Scholar 

  23. Smolenski V, Novoselova A, Osipenko A, Maershin A (2014) Thermodynamics and separation factor of uranium from lanthanum in liquid eutectic gallium-indium alloy/molten salt system. Electrochim Acta 145:81–85

    Article  CAS  Google Scholar 

  24. Volkovich AV, Maltsev SD, Yamshchikov FL, Chukin VA, Smolenski VV, Novoselova AV, Osipenko AG (2015) Thermodynamic properties of uranium in gallium-aluminum based alloys. J Nucl Mater 465:153–160

    Article  CAS  Google Scholar 

  25. Smolenski V, Novoselova A, Osipenko A, Luk’yanova Y (2015) Koefficienty razdeleniya U/La i U/Nd v rasplavlennoy sisteme Ga-In/3LiCl-2KCl (Separation factor of U/La and U/Nd in molten Ga-In/3LiCl-2KCl system). Rasplavy (Melts) 1:50–54

    Google Scholar 

  26. Smolenski V, Novoselova A, Volkovich AV, Ivanov AB, Griffits TR (2015) Thermodynamic properties of La-Ga-Al and U-Ga-Al alloys and the separation factor of U/La couple in the molten salt-liquid metal system. J Nucl Mater 466:373–378

    Article  Google Scholar 

  27. Smolenski V, Novoselova A, Osipenko A, Kormilytsin M, Bychkov A (2012) Electrochemistry of curium in molten chlorides. Recent trend in electrochemical science and technology. InTech, Rijeka, pp 11–30

    Google Scholar 

  28. Serp J, Allibert M, Terrier AL, Malmbeck R, Ougier M, Rebizant J, Glatz JP (2005) Electroseparation of actinides from lanthanides on solid aluminum electrode in LiCl-KCl eutectic melts. J Electrochem Soc 152:C167–C172

    Article  CAS  Google Scholar 

  29. Prabhakara Reddy B, Vandarkuzhali S, Subramanian T, Venkatesh P (2004) Electrochemical studies on the redox mechanism of uranium chloride in molten LiCl-KCl eutectic. Electrochim Acta 49:2471–2478

    Article  Google Scholar 

  30. Kuznetsov AS, Hayashi H, Minato K, Gaune-Escard M (2005) Electrochemical behavior and some thermodynamic properties of UCl4 and UCl3 dissolved in a LiCl-KCl eutectic melt. J Electrochem Soc 152:C203–C212

    Article  CAS  Google Scholar 

  31. Kurata M, Uozumi K, Kato T, Iizuka M (2009) Thermodynamic evaluation of liquid Cd cathode containing U and Pu. J Nucl Sci Technol 46:1070–1075

    Article  CAS  Google Scholar 

  32. Uozumi K, Iizuka M, Kato T, Inoue T, Shirai O, Iwai T, Arai Y (2004) Electrochemical behaviors of uranium and plutonium at simultaneous recoveries into liquid cadmium cathodes. J Nucl Mater 325:34–43

    Article  CAS  Google Scholar 

  33. Roy JJ, Grantham LF, Grimmett DL, Fusselman SP, Krueger CL, Storvick TS, lnoue T, Sakamura Y, Takahashi N (1996) Thermodynamic properties of U, Np, Pu, and Am in molten LiCl-KCI eutectic and liquid cadmium. J Electrochem Soc 143:2487–2492

    Article  CAS  Google Scholar 

  34. Lebedev VA (1993) Izbiratel’nost’ zhidkometallicheskikh elektrodov v rasplavlennykh galogenidakh (Selectivity of liquid metal electrodes in molten halides). Metallurgia, Chelyabinsk

    Google Scholar 

  35. Kober VI, Nichkov IF, Raspopin SP, Kuzminikh VM (1972) Thermodynamic properties of saturated solutions of neodymium with low-melting point metals. Alma-Ata 2:72–76

    Google Scholar 

  36. Kaptay G (2012) On the tendency of solutions to tend toward ideal solutions at high temperatures. Metall Mater Trans A 43:531–538

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by Act 211 Government of the Russian Federation, Contract № 02.A03.21.0006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeri Smolenski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolenski, V., Novoselova, A., Volkovich, V. et al. The effect of Al concentration on thermodynamic properties of Nd and U in Ga–Al-based alloys and the separation factor of Nd/U couple in a “molten salt-liquid metal system”. J Radioanal Nucl Chem 311, 687–693 (2017). https://doi.org/10.1007/s10967-016-5053-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-5053-5

Keywords

Navigation