Skip to main content
Log in

Forensic investigation of plutonium metal: a case study of CRM 126

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study, a certified plutonium metal reference material (CRM 126) with a known production history is examined using analytical methods that are commonly employed in nuclear forensics for provenancing and attribution. The measured plutonium isotopic composition and actinide assay are consistent with values reported on the reference material certificate. Model ages from U/Pu and Am/Pu chronometers agree with the documented production timeline. The results confirm the utility of these analytical methods and highlight the importance of a holistic approach for forensic study of unknown materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wallenius M, Mayer K (2000) Age determination of plutonium material in nuclear forensics by thermal ionisation mass spectrometry. Fresenius J Anal Chem 366(3):234–238. doi:10.1007/s002160050046

    Article  CAS  Google Scholar 

  2. Chen Y, Chang ZY, Zhao YG, Zhang JL, Li JH, Shu FJ (2009) Studies on the age determination of trace plutonium. J Radioanal Nucl Ch 281(3):675–678. doi:10.1007/s10967-009-0056-0

    Article  CAS  Google Scholar 

  3. Wallenius M, Peerani P, Koch L (2000) Origin determination of plutonium material in nuclear forensics. J Radioanal Nucl Ch 246(2):317–321. doi:10.1023/A:1006774524272

    Article  CAS  Google Scholar 

  4. Moody KJ (1995) Determination of plutonium metal origins. Lawrence Livermore National Laboratory, UCRL-ID-120253

  5. IAEA Illicit Trafficking Database (ITDB) Fact Sheet (2006) International Atomic Energy Agency

  6. Wallenius M, Lutzenkirchen K, Mayer K, Ray I, de Las Aldave, Heras L, Betti M, Cromboom O, Hild M, Lynch B, Nicholl A, Ottmar H, Rasmussen G, Schubert A, Tamborini G, Thiele H, Wagner W, Walker C, Zuleger E (2007) Nuclear forensic investigations with a focus on plutonium. J Alloy Compd 444:57–62. doi:10.1016/j.jallcom.2006.10.161

    Article  Google Scholar 

  7. 1962 Research Highlights of the National Bureau of Standards. (1962) National Bureau of Standards, Miscellaneous Publication 246

  8. Smith DB (1984) Safeguards and security progress report, January–December 1983. Los Alamos National Laboratory, LA-10170-PR

  9. Progress report for the period October 1984 through September 1985. (1986) New Brunswick Laboratory, NBL-315

  10. Sampson T, Kelley T (1997) PC/FRAM: a code for the nondestructive measurement of the isotopic composition of actinides for safeguards applications. Appl Radiat Isot 48(10):1543–1548

    Article  CAS  Google Scholar 

  11. Sampson TE, Kelley TA, Vo DT (2003) Application guide to gamma-ray isotopic analysis using the FRAM Software. Los Alamos National Laboratory, LA-14018

  12. Tandon L, Hastings E, Banar J, Barnes J, Beddingfield D, Decker D, Dyke J, Farr D, FitzPatrick J, Gallimore D (2008) Nuclear, chemical, and physical characterization of nuclear materials. J Radioanal Nucl Ch 276(2):467–473

    Article  CAS  Google Scholar 

  13. Tandon L, Kuhn K, Decker D, Porterfield D, Laintz K, Wong A, Holland M, Peterson D (2009) Plutonium metal standards exchange program for actinide measurement quality assurance (2001–2007). J Radioanal Nucl Ch 282(2):565–571. doi:10.1007/s10967-009-0215-3

    Article  CAS  Google Scholar 

  14. Spencer KJ, Tandon L, Gallimore D, Xu N, Kuhn K, Walker L, Townsend L (2009) Refinement of Pu parent–daughter isotopic and concentration analysis for forensic (dating) purposes. J Radioanal Nucl Ch 282(2):549–554. doi:10.1007/s10967-009-0287-0

    Article  CAS  Google Scholar 

  15. Waterbury GR, Nelson GB, Bergstresser KS, Metz CF (1970) Controlled-potential coulometric and potentiometric titrations of uranium and plutonium in ceramic-type materials. LA-4537

  16. ASTM C1108-12 (2012) standard test method for plutonium by controlled-potential coulometry. ASTM International. doi:10.1520/C1108-12

  17. Marsh S, Ortiz MR, Abernathey R, Rein J (1974) Improved two-column ion exchange separation of plutonium, uranium, and neodymium in mixed uranium–plutonium fuels for burnup measurement. Los Alamos National Laboratory, LA-5568

  18. Marsh SF, Mann MJ (1987) Improved recovery and purification of plutonium at Los Alamos using macroporous anion exchange resin. Los Alamos National Laboratory, LA-10906

  19. Abernathey R, Matlack G, Rein J (1972) Sequential ion exchange separation and mass spectrometric determination of neodymium, uranium, and plutonium in mixed oxide fuels for burnup and isotopic distribution measurements. Anal Methods Nuclear Fuel Cycle Proc 513–521

  20. Callis EL, Abernathey RM (1991) High-precision isotopic analyses of uranium and plutonium by total sample volatilization and signal integration. Int J Mass Spectrom 103(2–3):93–105. doi:10.1016/0168-1176(91)80081-W

    Article  CAS  Google Scholar 

  21. Stanley FE, Byerly BL, Thomas MR, Spencer KJ (2016) Static, mixed-array total evaporation for improved quantitation of plutonium minor isotopes in small samples. J Am Soc Mass Spectrom 27(6):1136–1138. doi:10.1007/s13361-016-1380-6

    Article  CAS  Google Scholar 

  22. Myers SC, Porterfield DR, Tandon L (2009) Unique challenges with recent gamma spectroscopy measurements at Los Alamos National Laboratory. J Radioanal Nucl Ch 282(2):533–537. doi:10.1007/s10967-009-0190-8

    Article  CAS  Google Scholar 

  23. Sturm M, Richter S, Aregbe Y, Wellum R, Mialle S, Mayer K, Prohaska T (2014) Evaluation of chronometers in plutonium age determination for nuclear forensics: what if the ‘Pu/U clocks’ do not match? J Radioanal Nucl Ch 302(1):399–411. doi:10.1007/s10967-014-3294-8

    Article  CAS  Google Scholar 

  24. Bateman H (1910) The solution of a system of differential equations occurring in the theory of radioactive transformations. Proc Cambridge Philos Soc 15(V):423–427

    CAS  Google Scholar 

  25. Faure G (1977) Principles of isotope geology. Wiley, New York

    Google Scholar 

  26. Spencer K, Rim J, Porterfield D, Roback R, Boukhalfa H, Stanley F (2015) High-precision plutonium isotopic compositions measured on Los Alamos National Laboratory’s General’s tanks samples: bearing on model ages, reactor modelling, and sources of material: further discussion of chronometry. Los Alamos National Laboratory, LA-UR-15-24855

  27. Seaborg GT, McMillan EM, Kennedy JW, Wahl AC (1946) Radioactive element 94 from deuterons on uranium. Phys Rev 69(7–8):366–367

    Article  CAS  Google Scholar 

  28. Moody KJ, Hutcheon ID, Grant PM (2005) Nuclear forensic analysis. CRC Press, Boca Raton

    Book  Google Scholar 

  29. Nicolaou G (2006) Determination of the origin of unknown irradiated nuclear fuel. J Environ Radioact 86(3):313–318. doi:10.1016/j.jenvrad.2005.09.007

    Article  CAS  Google Scholar 

  30. Robel M, Kristo MJ (2008) Discrimination of source reactor type by multivariate statistical analysis of uranium and plutonium isotopic concentrations in unknown irradiated nuclear fuel material. J Environ Radioact 99(11):1789–1797. doi:10.1016/j.jenvrad.2008.07.004

    Article  CAS  Google Scholar 

  31. Jones AE, Turner P, Zimmerman C, Goulermas JY (2014) Classification of spent reactor fuel for nuclear forensics. Anal Chem 86(11):5399–5405. doi:10.1021/ac5004757

    Article  CAS  Google Scholar 

  32. Plutonium: the first 50 years. DOE/DP-0137

  33. Toffer H, Kupinski AF (1970) Experimental isotopic analysis of point exposure data in hanford production reactor fuels. Douglas United Nuclear, Inc., DUN-7243 RD

  34. Kinderman EM, Schmidt HR, Alikire GJ, Chetham-Strode A, Ko R (1953) The isotopic content and specific activity of pile-produced plutonium. Hanford Atomic Products Operation, HW-26584

  35. Wick OJ (1967) Plutonium handbook; a guide to the technology. Gordon and Breach, New York

    Google Scholar 

  36. History of the plutonium production facilities at the Hanford site historic district, 1943–1990 (2001) DOE/RL-97-1047

  37. Albright D (1997) Plutonium and highly enriched uranium 1996: world inventories, capabilities, and policies. SIPRI, Solna

    Google Scholar 

  38. Norris RS (1994) British, French, and Chinese nuclear weapons. Westview Press, Boulder

    Google Scholar 

  39. Taylor R (2015) Reprocessing and recycling of spent nuclear fuel. Elsevier Science, Burlington

    Google Scholar 

  40. Dey PK, Bansal NK (2006) Spent fuel reprocessing: a vital link in Indian nuclear power program. Nucl Eng Des 236(7–8):723–729. doi:10.1016/j.nucengdes.2005.09.029

    Article  CAS  Google Scholar 

  41. Campbell DO, Burch WD (1990) The chemistry of fuel reprocessing: present practices, future trends. J Radioanal Nucl Ch 142(1):303–320. doi:10.1007/BF02039470

    Article  CAS  Google Scholar 

  42. Maeck WJ, Booman GL, Kussy ME, Rein JE (1960) Separation and determination of plutonium in uranium–Fission product mixtures. Anal Chem 32(13):1874–1876. doi:10.1021/ac50153a047

    Article  CAS  Google Scholar 

  43. Bernstrom B, Rydberg J (1957) Studies on the extraction of metal complexes. XXVIII. The distribution of some actinides and fission products between tributyl phosphate (TBP) and aqueous solutions of HNO3 can Ca(NO3)2. Acta Chem Scand 11:1173–1182. doi:10.3891/acta.chem.scand.11-1173

    Article  Google Scholar 

  44. Rydberg J, Bernstrom B (1957) Studies on the extraction of metal complexes. XXVII. The distribution of some actinides and fission products between methyl isobutyl ketone and aqueous solutions of HNO3 and Ca(NO3)2. Acta Chem Scand 11:86–97. doi:10.3891/acta.chem.scand.11-0086

    Article  CAS  Google Scholar 

  45. Christensen DC, Mullins LJ (1983) Present status for plutonium metal production and purification at Los Alamos–1982. Los Alamos National Laboratory, LA-9674-MS

  46. Nuclear materials: plutonium processing in the nuclear weapons complex (1992) GAO/RCED-92-109FS

  47. Reed MB, Strack BS (2002) Savannah river site at fifty. Dept. of Energy, New South Associates, Washington, D.C.

  48. Baldwin CE, Navratil JD (1982) Review of plutonium process chemistry at Rocky Flats. Rocky Flats Plant, RFP-3379

  49. Gerber MS (1996) Plutonium production story at the Hanford site: processes and facilities history. Westinghouse Hanford Company, Richland, WHC-MR-0521

  50. Mullins LJ, Foxx CL (1982) Direct Reduction of 238PuO2 and 239PuO2 to Metal. Los Alamos National Laboratory, LA-9073

  51. Sohn CL, Thorn CW, Christensen DC (1982) Enhanced Production of Plutonium Metal Using PuO2 in the PuF4/Bomb Reduction Process. Los Alamos National Laboratory, LA-UR-82-1230

  52. Clark DL, Hecker SS, Jarvinen GD, Neu MP (2011) Plutonium. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements. Springer, Berlin, pp 813–1264. doi:10.1007/978-94-007-0211-0_7

    Google Scholar 

  53. Orth DA (1963) Plutonium metal from trifluoride. Ind Eng Chem Process Design Dev 2(2):121–127. doi:10.1021/i260006a007

    Article  CAS  Google Scholar 

  54. Christensen DC, Williams JD, McNeese JA, Fife KW (1984) Plutonium metal preparation and purification at Los Alamos, 1984. Los Alamos National Laboratory, LA-UR-85-1471

  55. Knighton J, Auge R, Berry J, Franchini R (1976) Molten salt extraction of americium from molten plutonium metal. Atomics International Div., Golden, Colorado, RFP-2365

  56. Mullins LJ, Morgan AN (1981) Review of operating experience at the Los Alamos plutonium electrorefining facility, 1963–1977. Los Alamos National Laboratory, LA-8943

  57. Mullins LJ, Morgan AN, Apgar SAI, Christensen DC (1982) Six-kilogram scale electrorefining of plutonium metal. Los Alamos National Laboratory, LA-9649-MS

  58. Bronson MC, Thomas RL (1989) Electrorefining cell evaluation. Rocky Flats Plant, RFP-4207

  59. Moser WS, Navratil JD (1984) Review of major plutonium pyrochemical technology. J Less Common Met 100:171–187. doi:10.1016/0022-5088(84)90062-6

    Article  CAS  Google Scholar 

  60. Ozawa M, Yamamura O, Gonda K (1985) Corrosion of type 304L stainless steel in concentrated plutonium nitrate solution. J Nucl Sci Technol 22(1):68–69. doi:10.3327/jnst.22.68

    Article  CAS  Google Scholar 

  61. Soran DM, Stillman DB (1982) Analysis of the alleged Kyshtym disaster. Los Alamos National Laboratory, LA-9217-MS

  62. Diakov A (2011) The history of plutonium production in Russia. Sci Glob Secur 19(1):28–45. doi:10.1080/08929882.2011.566459

    Article  Google Scholar 

  63. Cochran TB, Arkin WM, Norris RS, Sands JI (1989) Nuclear weapons databook vol IV: Soviet nuclear weapons. Harper & Row, New York

    Google Scholar 

  64. Bushuev AY, Verzilov YM, Zubarev VN, Kachanovsky AE, Proshin IM, Petrova EV, Aleeva TB, Dmitriev AM, Zakharova EV, Ushakov SI (2002) Experimental determination of the spent graphite radioactive contamination at plutonium-production reactors of the Siberian Group of Chemical Enterprises (Tomsk-7). Nucl Technol 140(1):51–62

    CAS  Google Scholar 

  65. Wright D, Gronlund L (2003) Estimating China’s production of plutonium for weapons. Sci Glob Secur 11(1):61–80. doi:10.1080/08929880309007

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to gratefully acknowledge the US DHS/DNDO National Technical Nuclear Forensics Center (HSHQDC-14-X-00028) and US Department of Energy National Nuclear Security administration for jointly funding the project at Los Alamos National Laboratory. This support does not constitute an express or implied endorsement on the part of the US Government. This document is LA-UR-15-29559.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin L. Byerly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Byerly, B.L., Stanley, F., Spencer, K. et al. Forensic investigation of plutonium metal: a case study of CRM 126. J Radioanal Nucl Chem 310, 623–632 (2016). https://doi.org/10.1007/s10967-016-4919-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4919-x

Keywords

Navigation