Skip to main content
Log in

Vapor–liquid phase equilibrium diagram for uranium hexafluoride (UF6) using simplified temperature dependent intermolecular potential parameters (TDIP)

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The properties of uranium hexafluoride (UF6, CAS: 7783-81-5) are of importance to the nuclear industry as a precursor for the enrichment and product spent fuel reprocessing. This work is focused on obtaining the vapor–liquid equilibrium (VLE) curve for UF6 using temperature dependent intermolecular potential parameters (TDIP) as opposed to temperature independent intermolecular potential parameters (TIIP). TDIP indeed improves the simulated vapor–liquid coexistence curve, critical constants, and vapor pressure of UF6. However, both approaches need improvement since the predictions are still far from reproducing experimental saturated liquid density data for UF6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. DeWitt R (1960) Uranium hexafluoride: a survey of the physicochemical properties. vol GAT-280. Goodyear Atomic Corporation, Portsmouth

    Book  Google Scholar 

  2. Liimatainen RC (1959) Vapor–liquid equilibrium in the system bromine pentafluoride-uranium hexafluoride. USA

  3. Jarry RL, Rosen FD, Hale CF, Davis Wallace Jr (1953) Liquid–vapor equilibrium in the system uranium hexafluoride-hydrogen fluoride. J Phys Chem 57(9):905–909

    Article  CAS  Google Scholar 

  4. Rutledger GP, Jarry RL, Davis W Jr (1953) Freezing point diagram and liquid–liquid solubilities of the system uranium hexafluoride-hydrogen fluoride. J Phys Chem 57(5):541–544

    Article  Google Scholar 

  5. Zarkova L, Hohm U (2002) pVT-second virial coefficients B(T), Viscosity η(T) and self diffusion ρD(T) of the gases: BF3, CF4, SiF4, CCl4, SiCl4, SF6, MoF6, WF6, UF6, C(CH3)4 and Si(CH3)4 determined by means of an isotropic temperature-dependent potential. J Phys Chem Ref Data 31(1):183–216

    Article  CAS  Google Scholar 

  6. Zarkova L, Pirgov P (1995) Transport and equilibrium properties of UF6 gas simultaneously fitted by an effective isotropic potential with temperature-dependent parameters. J Phys B 28(19):4269–4281

    Article  CAS  Google Scholar 

  7. Llewellyn D (1953) 5. Some physical properties of uranium hexafluoride. J Chem Soc:28-36

  8. Oliver GD, Milton H, Grisard J (1953) The Vapor Pressure and Critical Constants of Uranium Hexafluoride1. J Am Chem Soc 75(12):2827–2829

    Article  CAS  Google Scholar 

  9. DeWitt R (1960) Uranium hexafluoride: a survey of the physicochemical properties. Goodyear Atomic Corp., Portsmouth

    Book  Google Scholar 

  10. Barber E (1988) The physical and chemical properties of uranium hexafluoride. Uranium Hexafluoride-Safe Handl Process Transp 24:1

    Google Scholar 

  11. Anderson J, Kerr C, Williams W (1994) Correlation of the thermophysical properties of uranium hexaflourine over a wide range of temperature and pressure. ORNL/ENG/TM-51, Oak Ridge National Laboratory

  12. Amphlett CB, Mullinger LW, Thomas LF (1948) Some physical properties of uranium hexafluoride. Trans Faraday Soc 44:927–938. doi:10.1039/TF9484400927

    Article  CAS  Google Scholar 

  13. Al-Matar AK, Tobgy AH, Suleiman IA (2008) The phase diagram of the Lennard-Jones fluid using temperature dependent interaction parameters. Mol Simul 34(3):289–294

    Article  CAS  Google Scholar 

  14. Al-Matar A (2002) A generating equation for mixing rules and assessment of their effect on the second virial coeffeicient. Dissertation, New Mexico State University, Las Cruces

  15. Al-Fayyd MAA (2010) Self-diffusion coefficient of Lennard-Jones fluid using temperature dependent interaction parameters. University of Jordan, Amman

    Google Scholar 

  16. Reed TM, Gubbins KE (1973) Applied statistical mechanics. McGraw-Hill, New York

    Google Scholar 

  17. Hirschfelder JO, Curtiss CF, Bird RB (1964) Molecular theory of gases and liquids, second corrected printing. Wiley, New York

    Google Scholar 

  18. Stockmayer WH, Beattie JA (1942) Determination of the Lennard-Jones parameters of the second virial coefficients. J Chem Phys 10:476–477

    Article  CAS  Google Scholar 

  19. Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications, 2nd edn. Academic Press, San Diego

    Google Scholar 

  20. Smit B, Frenkel D (1991) Vapor–liquid equilibria of the two-dimensional Lennard-Jones fluid(s). J Chem Phys 94(8):5663–5668

    Article  CAS  Google Scholar 

  21. Smit B (1992) Phase diagram of Lennard-Jones fluids. J Chem Phys 96(11):8639–8640

    Article  CAS  Google Scholar 

  22. Johnson JK, Zollweg JA, Gubbins KE (1993) The Lennard-Jones equation of state revisited. Mol Phys 78(5):591–618

    Article  CAS  Google Scholar 

  23. Scalise OH, Zarragoicoechea GJ, Gonzalez LE, Silbert M (1998) Phase equilibria of the two-dimensional Lennard-Jones fluid: reference systems and perturbation theories. Mol Phys 93(5):751–755

    Article  CAS  Google Scholar 

  24. Vishinyakov A, Piotrovskaya EM, Brodskaya EN, Votyakov EV, Tovbin YK (2001) Critical properties of Lennard-Jones fluids in narrow slit-shaped pores. Langmuir 17:4451–4458

    Article  Google Scholar 

  25. Prausnitz JM, Lichtenthler RN, de Azevedo EG (1999) Molecular thermodynamics of fluid-phase equilibria, 3rd edn. Prentice Hall PTR, New Jersey

    Google Scholar 

  26. Panagiotopoulos AZ, Quirke N, Stapleton M, Tildesley DJ (1988) Phase equilibria by the simulation in the Gibbs ensemble: alternative derivation, generalization and application to mixtures and membrane equilibria. Mol Phys 63(4):527–545

    Article  CAS  Google Scholar 

  27. Panagiotopoulos AZ (1987) Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol Phys 61(4):813–826

    Article  CAS  Google Scholar 

  28. Panagiotopoulos AZ (1992) Direct determination of fluid phase equilibria by simulation in the Gibbs ensemble: a review. Mol Simul 9:1–23

    Article  Google Scholar 

  29. Panagiotopoulos AZ (1994) Molecular simulation of phase coexistence: finite size effects and determination of critical parameters for two- and three-dimensional Lennard-Jones fluids. Int J Thermophys 15(6):1057–1072

    Article  CAS  Google Scholar 

  30. Panagiotopoulos AZ (2000) Monte Carlo methods for phase equilibria of fluids: a review. J Phys 12:R25–R52

    CAS  Google Scholar 

  31. Dymond JH, Smith EB (1980) The virial coefficients of pure gases and mixtures: a critical compilation. Clarendon Press, Oxford

    Google Scholar 

  32. Dymond JH, Marsh KN, Wilhoit RC, Wong KC (2002) Virial coefficients of pure gases and mixtures, subvolume A: virial coefficients of pure gases. Springer, Berlin

    Google Scholar 

  33. Maitland G, Rigby M, Smith E, Wakeham W (1981) Intermolecular forces: their origin and determination. Clarendon Press, Oxford

    Google Scholar 

  34. Münster A (1974) Statistical thermodynamics, vol 1. Springer, Berlin

    Google Scholar 

  35. Coroiu I, Demco D (1997) Second virial coefficients and transport properties of hexafluoride gases from an improved intermolecular potential. J Phys Sci 52(10):748

    CAS  Google Scholar 

  36. Malyshev V (1973) Equation of state for UF6 over the range of density variation to 0.0118 g/cm3 and temperature variation up to 367 K. Atomic Energy (USSR) 34(1):42–44

    CAS  Google Scholar 

  37. Malyshev V (1972) Equations of state for UF6 for a wide range of state parameters. Atomic Energy (USSR) 32(4):313–314

    CAS  Google Scholar 

  38. Morizot P, Ostorero J, Plurien P (1973) J Chem Phys 70:1582

    CAS  Google Scholar 

  39. Schneider B, Boring A, Cohen J (1974) Interaction potentials for UF6 with itself and with rare-gas atoms. Los Alamos Scientific Lab, Los Alamos

    Google Scholar 

  40. Heintz A, Meisinger E, Lichtenthaler R (1976) Meßwerte des zweiten Virialkoeffizienten und Bestimmung des zwischenmolekularen Wechselwirkungspotentials von gasförmigem Uranhexafluorid. Ber Bunsenges Phys Chem 80(2):163–166

    Article  CAS  Google Scholar 

  41. Hohm U, Zarkova L (2004) Extending the approach of the temperature-dependent potential to the small alkanes CH4, C2H6, C3H8, n-C4H10, i-C4H10, n-C5H12, C(CH3)4, and chlorine, Cl2. Chem Phys 298(1–3):195–203

    Article  CAS  Google Scholar 

  42. Hohm U, Zarkova L, Stefanov BB (2007) Perfluorinated n-Alkanes C m F2m+2 (m < 7): second pVT-virial coefficients, viscosities, and diffusion coefficients calculated by means of an (n-6) Lennard-Jones temperature-dependent potential. J Chem Eng Data 52(5):1539–1544

    Article  CAS  Google Scholar 

  43. Zarkova L, Hohm U (2009) Effective (n-6) Lennard-Jones potentials with temperature-dependent parameters introduced for accurate calculation of equilibrium and transport properties of ethene, propene, butene, and cyclopropane. J Chem Eng Data 54(6):1648–1655

    Article  CAS  Google Scholar 

  44. Zarkova L, Hohm U, Damyanova M (2003) Viscosity and pVT- second virial coefficient of binary noble-globular gas and globular–globular gas mixtures calculated by means of an isotropic temperature-dependent potential. J Phys Chem Ref Data 32(4):1591–1705

    Article  CAS  Google Scholar 

  45. Zarkova L, Hohm U, Damyanova M (2008) Viscosity, second pVT virial coefficient, and diffusion of binary mixtures of small alkanes CH4, C2H6, C3H8, n-C4H10, i-C4H10, n-C5H12, i-C5H12, and C(CH3)4 predicted by means of an isotropic temperature-dependent potential. J Chem Eng Data 53(6):1231–1240

    Article  CAS  Google Scholar 

  46. Zarkova L, Pirgov P (1996) The isotropic temperature-dependent potential describing the binary interactions in gaseous WF6 and MoF6. J Phys B 29(19):4411–4422

    Article  CAS  Google Scholar 

  47. Zarkova L, Pirgov P, Paeva G (1999) Simultaneously predicted transport and equilibrium properties of boron trifluoride gas. J Phys B 32:1535–1545

    Article  CAS  Google Scholar 

  48. Suleiman IA (2007) Vapor liquid diagram of Lennard-Jones fluid using temperature dependent interaction parameters. M.Sc. Thesis, University of Jordan, Amman, Jordan

  49. Al-Matar AK, Tobgy AH, Suleiman IA, Al-Faiad MA (2015) Improving Monte-Carlo and molecular dynamics simulation outcomes using temperature-dependent interaction parameters: the case of pure LJ fluid. Int J Comput Methods 12(02):1550003. doi:10.1142/S0219876215500036

    Article  Google Scholar 

  50. Kimura M, Schomaker V, Smith DW, Weinstock B (1968) Electron-diffraction investigation of the hexafluorides of tungsten, Osmium, iridium, uranium, neptunium, and plutonium. J Chem Phys 48(9):4001–4012

    Article  CAS  Google Scholar 

  51. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in Fortran: The art of scientific computing, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  52. Himmelblau DM (1970) Process analysis by statistical methods. Wiley, New York

    Google Scholar 

  53. Ying Z, Sheng W, Mao-Gang H (2014) Modified 2CLJDQP model and the second virial coefficients for linear molecules. Chin Phys B 23(12):125101

    Article  Google Scholar 

  54. Parsafar G, Kermanpour F, Najafi B (1999) Prediction of the temperature and density dependencies of the parameters of the average effective pair potential using only the LIR equation of state. J Phys Chem B 103(34):7287–7292

    Article  CAS  Google Scholar 

  55. Ioannis Skarmoutsos, Leonidas Kampanakis I, Jannis S (2005) Investigation of the vapor-liquid equilibrium and supercritical phase of pure methane via computer simulation. J Mol Liq 117:33–41

    Article  Google Scholar 

  56. Conongia Lopes JN, Tildesley DJ (1997) Multiphase equilibria using the Gibbs ensemble Monte Carlo method. Mol Phys 92(2):187–195

    Article  Google Scholar 

  57. Sweatman M, Quirke N (2004) Simulating fluid-solid equilibrium with the Gibbs ensemble. Mol Simul 30(1):23–28

    Article  CAS  Google Scholar 

  58. Kristóf T, Liszi J (1996) Alternative implementations of the Gibbs ensemble Monte Carlo calculation. Chem Phys Lett 261(6):620–624

    Article  Google Scholar 

  59. Smit B, De Smedt Ph, Frenkel D (1989) Computer simulations in the Gibbs ensemble. Mol Phys 68(4):931–950

    Article  CAS  Google Scholar 

  60. Smit B, Frenkel D (1989) Calculation of the chemical potential in the Gibbs ensemble. Mol Phys 68(4):951–958

    Article  CAS  Google Scholar 

  61. NIST (2015) http://www.cstl.nist.gov/srs/LJ_PURE/. Accessed 20 Oct 2015

  62. Verkhivker G, Tetel’baum S, Konyaeva G (1968) Thermodynamic properties of uranium hexafluoride (UF 6). Atomic Energy 24(2):191–195

    Article  Google Scholar 

Download references

Acknowledgments

This work is carried out through generous funding from the University of Jordan (JU) during the granted sabbatical leave in the academic year 2014/2015 spent at King Fahd University of Petroleum and Minerals (KFUPM), Kingdom of Saudi Arabia. We would like to acknowledge the help and support furnished by KFUPM through Grant IN131040.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Khalaf Al-Matar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Matar, A.K., Binous, H. Vapor–liquid phase equilibrium diagram for uranium hexafluoride (UF6) using simplified temperature dependent intermolecular potential parameters (TDIP). J Radioanal Nucl Chem 310, 139–154 (2016). https://doi.org/10.1007/s10967-016-4814-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4814-5

Keywords

Navigation