Skip to main content
Log in

Blood elements concentration in cyclists investigated by instrumental neutron activation analysis

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this study Br, Ca, Cl, Fe, K, Mg, Na, S and Zn levels in blood samples of cyclists were investigated using neutron activation analysis technique. The results were compared to individuals of the same age and gender, but not involved with physical activities (control group), which showed considerable differences. A decrease mainly in Br (91 %) and Ca (78 %) and an increase in Fe (26 %), S (82 %) and Zn (22 %) levels were evidenced. These results emphasize the importance of blood monitoring for the maintenance of endurance athletes performance, particularly for Br, Ca and S.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Oja P, Titze S, Bauman A, Geus B, Krenn P, Reger-Nash B, Kohlberger T (2011) Health benefits of cycling: systematic review. Scand J Med Sci Sports 21:496–509

    Article  CAS  Google Scholar 

  2. Bauman A, Rissel C (2009) Cycling and health: an opportunity for positive change? Med J Aust 190:347–348

    Google Scholar 

  3. Hu G, Jousilahti P, Borodulin K, Barengo NC, Lakka TA, Nissinen A, Tuomilehto J (2007) Occupational, commuting and leisure-time physical activity in relation to coronary heart disease among middle-aged Finnish men and women. Atherosclerosis 194(2):490–497

    Article  CAS  Google Scholar 

  4. Matthews CE, Jurj AL, Shu XO, Li HL, Yang G, Li Q, Gao YT, Zheng W (2007) Influence of exercise, walking, cycling, and overall nonexercise physical activity on mortality in Chinese women. Am J Epidemiol 165(12):1343–1350

    Article  Google Scholar 

  5. Bassett DR Jr, Pucher J, Buehler R, Thompson DL, Crouter SE (2008) Walking, cycling, and obesity rates in Europe, North America, and Australia. J Phys Act Health 5(6):795–814

    Google Scholar 

  6. Wolinsky I, Driskell JA (2001) Nutritional applications in exercise and sport. CRC Press, Boca Raton

    Google Scholar 

  7. Maughan RJ (1999) Role of micronutrients in sport and physical activity. Br Med Bull 55(3):683–690

    Article  CAS  Google Scholar 

  8. Lukaski HC (2004) Vitamin and mineral status: effects on physical performance. Nutrition 20:632–644

    Article  CAS  Google Scholar 

  9. Soria M, Gonzalez-Haro C, Ansón M, López-Colón JL, Escanero JF (2015) Plasma levels of trace elements and exercise induced stress hormones in well-trained athletes. J Trace Elem Med Biol 31:113–119

    Article  CAS  Google Scholar 

  10. Bellinghieri G, Savica V, Santoro D (2008) Renal alterations during exercise. J Ren Nutr 18(1):158–164

    Article  Google Scholar 

  11. Kovacs L, Zamboni CB, Nunes LAS, Lourenço TF, Macedo DV (2013) Concentrations of ions and metals in blood of amateur and elite runners using NAA. J Radioanal Nucl Chem 297:393–398

    Article  CAS  Google Scholar 

  12. Kovacs L, Zamboni CB, Oliveira LC, Sato IM (2008) Analysis of serum and whole blood using NAA for clinical investigation. J Radioanal Nucl Chem 278:543–545

    Article  CAS  Google Scholar 

  13. Manual de Exames do laboratório Fleury. http://lare.fleury.com.br/manual-exames/Pages/default.aspx. Accessed 05 Sep 2015

  14. Medeiros JAG, Zamboni CB, Zahn GS, Oliveira LC, Dalaqua L Jr (2005) Software para realização de análises hematológicas utilizando processo radioanalítico. In: Proceeding of 39º Brazilian Congress of Clinical Pathology/Medicine Laboratorial, CD ROM

  15. Gibney MJ, Vorster HH, Kok FJ (2002) Introduction to human nutrition. Blackwell Publishing, London

    Google Scholar 

  16. Kohlmeier M (2003) Bromine. Nutrient metabolism. Elsevier, Oxford

    Google Scholar 

  17. Wielopolski L, Adams WH, Heotis PM (1986) Blood bromine levels in a Pacific atoll population. Environ Res 41:91–98

    Article  CAS  Google Scholar 

  18. Cuenca RE, Pories WJ, Bray J (1988) Bromine levels in human serum, urine, hair. Biol Trace Elem Res 16:151–154

    Article  CAS  Google Scholar 

  19. McCall AS, Cummings CF, Bhave G, Vanacore R, Page-McCaw A, Hudson BG (2014) Bromine is an essential trace element for assembly of collagen IV scaffolds in tissue development and architecture. Cell 157(6):1380–1392

    Article  CAS  Google Scholar 

  20. Weiss SJ, Test ST, Eckmann CM, Roos D, Regiani S (1986) Brominating oxidants generated by human eosinophils. Science 234(4773):200–203

    Article  CAS  Google Scholar 

  21. Leal AS, Menezes MABC, Andoine O, Vermaercke P, Sneyers L (2008) A comparative neutron activation analysis study of common generic manipulated and reference medicines commercialized in Brazil. Appl Radiat Isot 66(10):1307–1312

    Article  CAS  Google Scholar 

  22. Oliveira LC, Zamboni CB, Metairon S (2009) Reference values in blood from inhabitants of Brazil: Br, Cl, K and Na determination using NAA. J Radioanal Nucl Chem 282:95–97

    Article  CAS  Google Scholar 

  23. Mousavi-Yeganeh S, Ebrahimy- Fakhar F, Enayati F (1984) Analysis of addicted and normal blood samples from humans by proton induced X-ray emission. Nucl Instrum Methods Phys Res B3:364–367

    Article  Google Scholar 

  24. Rodushkin I, Odman F, Olofsson R, Axelsson MD (2000) Determination of 60 elements in whole blood by sector field inductively coupled plasma mass spectrometry. J Anal At Spectrom 15:937–944

    Article  CAS  Google Scholar 

  25. Mahan LK, Stump SE, Raymond JL (2012) Krause’s food and the nutrition care process, 13th edn. Elsevier, Missouri

    Google Scholar 

  26. Ingenbleek Y, Kimura H (2013) Nutritional essentiality of sulfur in health and disease. Nutr Rev 71(7):413–432

    Article  Google Scholar 

  27. Vally H, Misso NL, Madan V (2009) Clinical effects of sulphite additives. Clin Exp Allergy 39(11):1643–1651

    Article  CAS  Google Scholar 

  28. Garlick P (2004) The nature of human hazards associated with excessive intake of amino acids. J Nutr 134(6):1633S–1639S

    CAS  Google Scholar 

  29. The National Academies Press. http://www.nap.edu/openbook.php?record_id=5776. Accessed 19 Dec 2015

  30. Speich M, Pineau A, Ballereau F (2001) Minerals, trace elements and related biological variables in athletes and during physical activity. Clin Chim Acta 312:1–11

    Article  CAS  Google Scholar 

  31. Wiliiams JH, Klug GA (1995) Calcium exchange hypothesis of skeletal muscle fatigue: a brief review. Muscle Nerve 18(4):421–434

    Article  Google Scholar 

  32. Andrews NC (2000) Iron metabolism: iron deficiency and iron overload. Annu Rev Genom Hum Genet 1:75–98

    Article  CAS  Google Scholar 

  33. Zotter H, Robinson N, Zorzoli M, Schattenberg L, Saugy M, Mangin P (2004) Abnormally high serum ferritin levels among professional road cyclists. Br J Sports Med 38(6):704–708

    Article  CAS  Google Scholar 

  34. Beard J, Tobin B (2000) Iron status and exercise. Am J Clin Nutr 72:594S–597S

    CAS  Google Scholar 

  35. Sinclair LM, Hinton PS (2005) Prevalence of iron deficiency with and without anemia in recreationally active men and women. J Am Diet Assoc 105:975–978

    Article  CAS  Google Scholar 

  36. Dubnov G, Constantini NW (2004) Prevalence of iron depletion and anemia in top-level basketball players. Int J Sport Nutr Exerc Metab 14:30–37

    CAS  Google Scholar 

  37. Lombardi G, Lippi G, Banfi G (2014) Iron requirements and iron status of athletes. In: Maughan RJ (ed) The encyclopedia of sports medicine: An IOC Medical Commission Publication, vol 19, pp 229–241

  38. Wilkinson J, Martin DT, Adams AA (2002) Iron status in cyclists during high-intensity interval training and recovery. Int J Sports Med 23:544–548

    Article  CAS  Google Scholar 

  39. Puntarulo S (2005) Iron, oxidative stress and human health. Mol Aspects Med 26:299–312

    Article  CAS  Google Scholar 

  40. Mettler S, Zimmermann MB (2010) Iron excess in recreational marathon runners. Eur J Clin Nutr 64(5):490–494

    Article  CAS  Google Scholar 

  41. Corsetti R, Lombardi G, Lanteri P, Colombini A, Banfi G (2012) Haematological and iron metabolismo parameters in professional cyclists during the Giro dÌtalia 3-weeks stage race. Clin Chem Lab Med 50(5):949–956

    Article  CAS  Google Scholar 

  42. Micheletti A, Rossi R, Rufini S (2001) Zinc status in athletes—relation to diet and exercise. Sports Med 31(8):577–582

    Article  CAS  Google Scholar 

  43. Cordova A, Alvarez-Mon M (1995) Behavior of zinc in physical exercise: an especial reference to immunity and fatigue. Neurosci Biobehav Rev 19(3):439–445

    Article  CAS  Google Scholar 

  44. Tuya IR, Gil EP, Marifio MM, Garcia-Monc Carra RM, Misiego AS (1996) Evaluation of the influence of physical activity on the plasma concentrations of several trace metals. Eur J Appl Physiol 73:299–303

    Article  CAS  Google Scholar 

  45. Marques LFJC, Donangelo CM, Franco JG, Pires L, Luna AS, Casimiro-Lopes G, Lisboa PC, Koury JC (2011) Plasma zinc, copper, and serum thyroid hormones and insulin levels after zinc supplementation followed by placebo in competitive athletes. Biol Trace Elem Res 142(3):415–423

    Article  CAS  Google Scholar 

  46. Zaitseva IP, Skalny AA, Tinkov AA, Berezkina ES, Grabeklis AR, Nikonorov AA, Skalny AV (2015) Blood essential trace elements and vitamins in students with different physical activity. Pak J Nutr 14(10):721–726

    Article  Google Scholar 

  47. Lin SM (1983) Determination of trace elements in human whole blood by instrumental neutron activation analysis. Radioisotopes 32:155–162

    Article  CAS  Google Scholar 

  48. Khan AH, Khaliquzzaman M, Zaman MB, Husain M, Abdullah M, Akhter S (1980) Trace element composition of blood in adult population in Bangladesh. J Radioanal Nucl Chem 57:157–167

    Article  CAS  Google Scholar 

  49. Ward NI, Ryan DE (1979) Multi-element analysis of blood for trace metals by neutron activation analysis. Anal Chim Acta 105:185–197

    Article  CAS  Google Scholar 

  50. Forte G, Visconti A, Santucci S, Ghazaryan A, Figà-Talamanca L, Cannoni S, Bocca B, Pino A, Violante N, Alimonti A, Salvetti A, Ristori G (2005) Quantification of chemical elements in blood of patients affected by multiple sclerosis. Ann Ist Super Sanità 41(2):213–216

    CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the clinical staff at blood bank for the technical assistance given during the blood collection, to the voluntary athletes, the trainer Hélio Souza from UNICAMP, and to the financial support from CNPq and FAPESP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. B. Zamboni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zamboni, C.B., Kovacs, L., Metairon, S. et al. Blood elements concentration in cyclists investigated by instrumental neutron activation analysis. J Radioanal Nucl Chem 309, 45–51 (2016). https://doi.org/10.1007/s10967-016-4778-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-016-4778-5

Keywords

Navigation