Skip to main content
Log in

Studies on electrochemical behavior of uranium species in choline chloride-urea eutectic for developing electrolytically treating method of uranium-bearing wastes

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

As one of methods for recovering uranium from the uranium-bearing wastes, we have proposed the electrolytic deposition method using choline chloride-urea (CCU) eutectic as media. Bulk electrolysis of the CCU solutions dissolving uranium-bearing wastes were carried out at −1.5 V at 80 °C. The deposits were formed on a carbon electrode as cathode and mainly consist of the U(VI) and U(IV) mixed oxide compounds containing F, O, and N. Consequently, it was confirmed that the CCU eutectic is effective media for recovering uranium selectively from uranium-bearing waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Amamoto I, Wakabayashi S (1993) Uranium refining and conversion at Ningyo Toge works. Shigen-to-Sozai 109:1170–1174

    Article  Google Scholar 

  2. Zaima N, Morimoto Y, Sugitsue N, Kado K (2010) Uranium refining and conversion plant decommissioning project. In: Proceedings of 13th International Conference on Environmental Remediation and Radioactive Waste Management, vol. 13, pp 311–320

  3. Japan Atomic Energy Commission (2010) Basic concept for treatment and disposal of uranium waste. Japan. Atomic. Energy. Commission. Report, Japan

  4. Seung-Soo K, Wan-Suk K, Gye-Nam K, Hye-Min P, Park UR, Moon JK (2013) Development of a practical decontamination procedure for uranium-contaminated concrete waste. J Radioanal Nucl Chem 298:973–980

    Article  Google Scholar 

  5. Jung-Joon L, Jeikwon M, Gye-Nam K, Kune-Woo L (2010) Decontamination of radioactive soil wastes using an agglomeration-leaching process. Korean J Chem Eng 27:639–644

    Article  Google Scholar 

  6. Ikeda A, Aida M, Fujii Y, Kataoka S, Annnen S, Sato J (2002) Ion exchange separation for decontamination of centrifuge enrichment plant. J Nucl Sci Technol 39:1099–1105

    Article  CAS  Google Scholar 

  7. Francis AJ, Dodge CJ, Mcdonald JA, Halada GP (2005) Decontamination of uranium-contaminated steel surfaces by hydroxycarboxylic acid with uranium recovery. Environ Sci Technol 39:5015–5021

    Article  CAS  Google Scholar 

  8. Binnemans K (2007) Lanthanides and actinides in ionic liquids. Chem Rev 107:2592–2614

    Article  CAS  Google Scholar 

  9. Mudring AV, Tang S (2010) Ionic liquids for lanthanide and actinide chemistry. Eur J Inorg Chem 18:2569–2581

    Article  Google Scholar 

  10. Rao CJ, Venkatesan KA, Nagarajan K, Srinivasan TG, Rao PRV (2010) Electrodeposition of metallic uranium at near ambient conditions from room temperature ionic liquid. J Nucl Mater 408:25–29

    Google Scholar 

  11. Panja S, Mohapatra PK, Tripathi SC, Gandhi PM, Janardan PA (2012) A highly efficient solvent system containing TODGA in room temperature ionic liquids for actinide extraction. Sep Purif Technol 96:289–295

    Article  CAS  Google Scholar 

  12. Sun X, Luo H, Dai S (2012) Ionic liquids-based extraction: a promising strategy for the advanced nuclear fuel cycle. Chem Rev 112:2100–2128

    Article  CAS  Google Scholar 

  13. Routa A, Venkatesana KA, Srinivasana TG, Rao PRV (2012) Separation of plutonium(IV) from uranium(VI) using phosphonate-based task-specific ionic liquid. Desalin Water Treat 38:179–183

    Article  Google Scholar 

  14. Rao PRV, Venkatesan KA, Raut A, Srinivasan TG, Nagarajan K (2012) Potential applications of room temperature ionic liquids for fission products and actinide separation. Sep Sci Technol 47:204–222

    Article  Google Scholar 

  15. Takao K, Bell TJ, Ikeda Y (2013) Actinide Chemistry in Ionic Liquids. Inorg Chem 52:3459–3472

    Article  CAS  Google Scholar 

  16. Pemberton WJ, Droessler JE, Kinyanjui JM, Czerwinski KR, Harchett DW (2013) Electrochemistry of soluble UO2 from the direct dissolution of UO2CO3 in acidic ionic liquid containing water. Electrochim Acta 93:264–271

    Article  CAS  Google Scholar 

  17. Mohapatra PK, Kandwal P, Iqbal M, Huskens J, Murali MS, Verboom W (2013) A novel CMPO-functionalized task specific ionic liquid: synthesis, extraction and spectroscopic investigations of actinide and lanthanide complexes. Dalton Trans 42:4343–4347

    Article  CAS  Google Scholar 

  18. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147

    Article  CAS  Google Scholar 

  19. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 1:70–71

    Article  Google Scholar 

  20. Abbott AP, Ttaib KE, Frisch G, McKenzie KJ, Ryder KS (2009) Electrodeposition of copper composites from deep eutectic solvents based on choline chloride. Phys Chem Chem Phys 11:4269–4277

    Article  CAS  Google Scholar 

  21. Bakkar A, Neubert V (2007) Electrodeposition onto magnesium in air and water stable ionic liquids: from corrosion to successful plating. Electrochem Commun 9:2428–2435

    Article  CAS  Google Scholar 

  22. Abbott AP, Capper G, Davies DL, Rasheed RK, Shikotra P (2005) Selective extraction of metals from mixed oxide matrixes using choline-based ionic liquids. Inorg Chem 44:6497–6499

    Article  CAS  Google Scholar 

  23. Ogura T, Sasaki K, Takao K, Arai T, Ikeda Y (2012) Electrochemical behavior of [UO2 Cl4]2− in 1-ethyl-3-methylimidazolium based ionic liquids. Sci China Chem 55:1699–1704

    Article  CAS  Google Scholar 

  24. Ogura T, Takao K, Sasaki K, Arai T, Ikeda Y (2011) Spectroelectrochemical identification of a pentavalent uranyl tetrachloro complex in room-temperature ionic liquid. Inorg Chem 50:10525–10527

    Article  CAS  Google Scholar 

  25. Philip SG, Lawrence HT (1957) Spectrophotometric studies of uranyl-urea, -thiourea and -guanidine systems in absolute ethyl alcohol. J Am Chem Soc 79:4296–4297

    Article  Google Scholar 

  26. Szabo Z, Toraishi T, Vallet V, Grenthe I (2006) Solution coordination chemistry of actinides: thermodynamics structure and reaction mechanisms. Coord. Chem. Rew. 250:784–815

    Article  CAS  Google Scholar 

  27. Zuckerman JJ, Hagen AP (2007) Inorganic Reactions and methods: Electron—transfer and electrochemical reactions; photochemical and other energized reactions, vol 15. Wiley, Hoboken, New Jersey

  28. Ohashi Y, Asanuma N, Harada M, Wada Y, Matsubara T, Ikeda Y (2009) Application of ionic liquid as a medium for treating waste contaminated with UF4. J Nucl Sci Technol 46:771–775

    Article  CAS  Google Scholar 

  29. Asanuma N, Harada M, Yasuike Y, Nogami M, Suzuki K, Ikeda Y (2007) Electrochemical properties of uranyl ion in ionic liquids as media for pyrochemical reprocessing. J Nucl Sci Technol 44:368–372

    Article  CAS  Google Scholar 

  30. Giridhar P, Venkatesan KA, Subramaniam S, Srinviasan TG, Rao PRV (2006) Electrochemical behaviour of uranium(VI) in 1-butyl-3-methylimidazolium chloride and in 0.05 M aliquat-336/chloroform. Radiochim Acta 94:415–420

    CAS  Google Scholar 

  31. Giridhar P, Venkatesan KA, Srinivasan TG, Rao PRV (2007) Electrochemical behavior of uranium(VI) in 1-butyl-3-methylimidazolium chloride and thermal characterization of uranium oxide deposit. Electrochim Acta 52:3006–3012

    Article  CAS  Google Scholar 

  32. Sornein MO, Cannes C, Naour CL, Mendes M, Hennig C (2011) Electro- chemical behavior of tetrachloro and tetrabromo uranyl complexes in room temperature ionic liquids. J Electoanal Chem 661:49–56

    Article  CAS  Google Scholar 

  33. Giridhar P, Venkatesan KA, Subramaniam S, Srinivasan TG, Rao PRV (2008) Extraction of uranium(VI) by 1.1 M tri-n-butylphosphate/ionic liquid and the feasibility of recovery by direct electrodeposition from organic phase. J Alloys Compd 448:104–108

    Article  CAS  Google Scholar 

  34. Heerman L, Waele RD, D’Olieslager W (1985) Electrochemistry and spectroscopy of uranium in basic AlCl3 + N-(n-butyl)pyridinium chloride room temperature molten salts. J Electroanal Chem 193:289–294

    Article  CAS  Google Scholar 

  35. Rodden C J (1964) Analysis of essential nuclear reactor materials, U. S. Superintendent Documents

Download references

Acknowledgments

The authors are grateful to members of the Waste Management Engineering Section, Environmental Research and Development Department, Ningyo-toge Environmental Engineering Center, Sector of Decommissioning and Radioactive Waste Management, Japan Atomic Energy Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yusuke Ohashi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohashi, Y., Asanuma, N., Harada, M. et al. Studies on electrochemical behavior of uranium species in choline chloride-urea eutectic for developing electrolytically treating method of uranium-bearing wastes. J Radioanal Nucl Chem 309, 627–636 (2016). https://doi.org/10.1007/s10967-015-4625-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4625-0

Keywords

Navigation