Skip to main content
Log in

Measurement background and the sediment age-dating reach of 32Si

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Detector sensitivity and purification challenges have limited published 32Si sediment dating studies. The cosmogenic isotope 32Si can fill the sediment geochronology gap between 210Pb (<150 years) and 14C (>1000 years). Targeting this age range can provide geochronological reconstructions of paleoindicators that identify recent human and climate-induced shifts in coastal areas. We are preparing detectors and kilogram-scale sample preparation techniques for such a study of Puget Sound sediments. This work considers the impact of background on counting time and 32Si age-dating reach. Design and performance of new low-background, gas-proportional beta counters to measure 32Si (via 32P) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. A wide variation exists in literature-reported values of the 32Si half-life. An offset from the true value of the half-life introduces a constant relative error in the sediment age determination at all layers analyzed in a core.

References

  1. Kharkar DP, Turekian KK, Scott MR (1969) Comparison of sedimentation rates obtained by 32Si and uranium decay series determinations in some siliceous antarctic cores. Earth Planet Sci Lett 6(1):61–68. doi:10.1016/0012-821x(69)90175-7

    Article  CAS  Google Scholar 

  2. Krishnaswamy S, Lal D, Martin JM, Meybeck M (1971) Geochronology of lake sediments. Earth Planet Sci Lett 11(5):407–414. doi:10.1016/0012-821x(71)90202-0

    Article  CAS  Google Scholar 

  3. Morgenstern U, Fifield LK, Zondervan A (2000) New frontiers in glacier ice dating: measurement of natural 32Si by AMS. Nucl Instrum Methods B 172:605–609

    Article  CAS  Google Scholar 

  4. Morgenstern U, Geyh MA, Kudrass HR, Ditchburn RG, Graham IJ (2001) 32Si dating of marine sediments from Bangladesh. Radiocarbon 43(2B):909–916

    CAS  Google Scholar 

  5. Fifield LK, Morgenstern U (2009) Silicon-32 as a tool for dating the recent past. Quat Geochronol 4(5):400–405. doi:10.1016/j.quageo.2008.12.006

    Article  Google Scholar 

  6. Morgenstern U, Ditchburn RG, Vologina EG, Sturm M (2013) 32Si dating of sediments from Lake Baikal. J Paleolimnol 50(3):345–352. doi:10.1007/s10933-013-9729-3

    Article  Google Scholar 

  7. Lal D, Peters B (1967) Cosmic ray produced radioactivity on the earth. In: Sitte K (ed) Kosmische Strahlung II/Cosmic Rays II, vol 9/46/2., Handbuch der Physik/Encyclopedia of PhysicsSpringer, Berlin, pp 551–612. doi:10.1007/978-3-642-46079-1_7

    Chapter  Google Scholar 

  8. Craig H, Somayajulu BLK, Turekian KK (2000) Paradox lost: silicon 32 and the global ocean silica cycle. Earth Planet Sci Lett 175(3–4):297–308. doi:10.1016/S0012-821x(99)00300-3

    Article  CAS  Google Scholar 

  9. Nijampurkar VN, Amin BS, Kharkar DP, Lal D (1966) ‘Dating’ ground waters of ages younger than 1000–1500 years using natural silicon-32. Nature 210:478–480

    Article  CAS  Google Scholar 

  10. Gong J, Li C, Wang W, Zheng G, Hu H, He M, Jiang S (2011) 32Si AMS measurement with ΔE-Q3D method. Nucl Instrum Methods Phys Res Sect B 269(23):2745–2749. doi:10.1016/j.nimb.2011.08.026

    Article  CAS  Google Scholar 

  11. Brandenberger JM, Crecelius EA, Louchouarn P (2008) Historical inputs and natural recovery rates for heavy metals and organic biomarkers in Puget Sound during the 20th century. Environ Sci Technol 42(18):6786–6790

    Article  CAS  Google Scholar 

  12. Brandenberger JM, Louchouarn P, Crecelius EA (2011) Natural and post-urbanization signatures of hypoxia in two basins of Puget Sound: historical reconstruction of redox sensitive metals and organic matter inputs. Aquat Geochem 17(4–5):645–670. doi:10.1007/s10498-011-9129-0

    Article  CAS  Google Scholar 

  13. Louchouarn P, Kuo L-J, Brandenberger JM, Marcantonio F, Garland C, Gill GA, Cullinan V (2012) Pyrogenic inputs of anthropogenic Pb and Hg to sediments of the Hood Canal, Washington, in the 20th century: source evidence from stable Pb isotopes and PAH signatures. Environ Sci Technol 46(11):5772–5781. doi:10.1021/es300269t

    Article  CAS  Google Scholar 

  14. Kuo L-J, Louchouarn P, Herbert BE, Brandenberger JM, Wade TL, Crecelius E (2011) Combustion-derived substances in deep basins of Puget Sound: historical inputs from fossil fuel and biomass combustion. Environ Pollut 159(4):983–990. doi:10.1016/j.envpol.2010.12.012

    Article  CAS  Google Scholar 

  15. Brandenberger JM, Crecelius EA, Louchouarn P, Cooper SR, McDougall K, ELeopold E, Liu G (2008) Reconstructing trends in hypoxia using multiple paleoecological indicators recorded in sediment cores from Puget Sound, WA

  16. DeMaster DJ, Cochran JK (1982) Particle mixing rates in deep-sea sediments determined from excess 210Pb and 32Si profiles. Earth Planet Sci Lett 61:257–271

    Article  CAS  Google Scholar 

  17. Nijampurkar VN, Rao DK, Oldfield F, Renberg I (1998) The half-life of 32Si: a new estimate based on varved lake sediments. Earth Planet Sci Lett 163:191–196

    Article  CAS  Google Scholar 

  18. Rings A, Lucke A, Schleser GH (2004) A new method for the quantitative separation of diatom frustules from lake sediments. Limnol Oceanogr 2:25–34

    Article  Google Scholar 

  19. Coppola L, Gustafsson O, Andersson P, Axelsson P (2005) Fractionation of surface sediment fines based on a coupled sieve-SPLITT (split flow thin cell) method. Water Res 39(10):1935–1945. doi:10.1016/j.watres.2005.04.005

    Article  CAS  Google Scholar 

  20. Gellermann R, Boerner I, Franke T, Froehlich K (1988) Preparation of water samples for 32Si determinations. Isotopenpraxis Isot Environ Health Stud 24(3):114–117

    Article  CAS  Google Scholar 

  21. Currie LA (1968) Limits for qualitative detection and quantitative determination—application to radiochemistry. Anal Chem 40(3):586–593

    Article  CAS  Google Scholar 

  22. Bevington PR, Robinson DK (1992) Data reduction and error analysis for the physical sciences, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  23. Aalseth CE, Day AR, Hoppe EW, Hossbach TW, Hyronimus BJ, Keillor ME, Litke KE, Mintzer EE, Seifert A, Warren GA (2009) Design and construction of a low-background, internal-source proportional counter. J Radioanal Nucl Chem 282(1):233–237. doi:10.1007/s10967-009-0258-5

    Article  CAS  Google Scholar 

  24. Aalseth CE, Bonicalzi RM, Cantaloub MG, Day AR, Erikson LE, Fast J, Forrester JB, Fuller ES, Glasgow BD, Greenwood LR, Hoppe EW, Hossbach TW, Hyronimus BJ, Keillor ME, Mace EK, McIntyre JI, Merriman JH, Myers AW, Overman CT, Overman NR, Panisko ME, Seifert A, Warren GA, Runkle RC (2012) A shallow underground laboratory for low-background radiation measurements and materials development. Rev Sci Instrum 83(11):113503. doi:10.1063/1.4761923

    Article  CAS  Google Scholar 

  25. Hoppe EW, Seifert A, Aalseth CE, Bachelor PP, Day AR, Edwards DJ, Hossbach TW, Litke KE, McIntyre JI, Miley HS, Schulte SM, Smart JE, Warren GA (2007) Cleaning and passivation of copper surfaces to remove surface radioactivity and prevent oxide formation. Nucl Instrum Methods Phys Res Sect A 579(1):486–489. doi:10.1016/j.nima.2007.04.101

    Article  CAS  Google Scholar 

  26. Seifert A, Aalseth CE, Day AR, Fuller ES, Hoppe EW, Keillor ME, Mace EK, Overman CT, Warren GA (2012) The design, construction, and initial characterization of an ultra-low-background gas-proportional counting system. J Radioanal Nucl Chem 296(2):915–921. doi:10.1007/s10967-012-2059-5

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the DOE for sponsorship of this work through the Ultra-Sensitive Nuclear Measurements Initiative at Pacific Northwest National Laboratory. US Department of Energy Contract No. DE-AC05-76RLO1830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin E. Keillor.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keillor, M.E., Aalseth, C.E., Arrigo, L.M. et al. Measurement background and the sediment age-dating reach of 32Si. J Radioanal Nucl Chem 307, 2313–2319 (2016). https://doi.org/10.1007/s10967-015-4592-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4592-5

Keywords

Navigation