Skip to main content
Log in

Speciation of U and Am in sol–gel derived borosilicate glasses by photoluminescence lifetime spectroscopy

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Borosilicate glasses are intended to be the barrier in between the high level nuclear waste and the geosphere. The oxidation state and the coordination geometry of a particular element in the glass influences its solubility, migration and complexation behavior, which in turn influences its long term leaching behavior. In this context, uranium and americium containing barium borosilicate glasses were prepared by sol–gel route and the speciation studies of U and Am in the glasses were carried out using photoluminescence lifetime spectroscopic technique. It was observed that in the matrix the uranium is stabilised as (UO6)6– and the americium as Am3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Plodinec MJ (2000) Borosilicate glasses for nuclear waste immobilisation. Glass Tech 41:186–192

    CAS  Google Scholar 

  2. Donald IW, Metcalfe BL, Taylor RNJ (1997) The immobilization of high level radioactive wastes using ceramics and glasses. J Mater Sci 32:5851–5887

    Article  CAS  Google Scholar 

  3. Lee WE, Ojovan MI, Stennett MC, Hyatt NC (2006) Immobilisation of radioactaive waste in glass, glass composite materials and ceramics. Adv Appl Ceram 105:3–12

    Article  CAS  Google Scholar 

  4. Pegg IL (2015) Turning nuclear waste into glass. Phys Today 68:33–39

    Article  CAS  Google Scholar 

  5. Deissmann G, Neumeier S, Brandt F, Modolo G, Bosbach D (2014) Evaluation of the long term behavior of potential plutonium waste forms in a geological repository. MRS Proc 1665:23–30

    Article  Google Scholar 

  6. Hench LL, Clark DE (1984) High level waste immobilization forms. Nucl Chem Waste Man 5:149–171

    Article  CAS  Google Scholar 

  7. Lutze W, Ewing RC (1988) Radioactive waste forms for the future. North-Holland, Amsterdam, pp 31–35

    Google Scholar 

  8. Joseph K, Asuvathraman R, Raja Madhavan R, Jena H, Govindan Kutty KV, Vasudeva Rao PR (2011) Studies on novel matrices for high level waste from fast reactor fuel reprocessing. Energy Procedia 7:518–524

    Article  CAS  Google Scholar 

  9. Kaushik CP, Mishra RK, Sengupta P, Kumar A, Das D, Kale GB, Raj K (2006) Barium borosilicate glass- apotential matrix for immobilisation of sulfate bearing high level radioactive liquid waste. J Nucl Mater 358:129–138

    Article  CAS  Google Scholar 

  10. Blasse G, Bleijenberg KC, Krol DM (1979) The luminescence of hexavalent uranium in solids. J Lumin 18(19):57–62

    Article  Google Scholar 

  11. Tanner PA (1995) Luminescence of U3+ doped hexachloro elpsolite. J Mol Struct 355:299–302

    Article  CAS  Google Scholar 

  12. Hashem E, Swinburne AN, Schulzke C, Evans RC, Platts JA, Kerridge A, Natrajan LS, Baker RJ (2013) Emission spectroscopy of U(IV) compounds: a combined synthesis spectroscopic and computational studies. RSC Adv 3:4350–4361

    Article  CAS  Google Scholar 

  13. Giacovazzo C. (1992) Fundamentals of crystallography IUCr. Oxford, New York, pp 420–421

  14. Mohapatra M, Natarajan V, Godbole SV (2014) Speciation of ‘Eu’ in sol–gel derived alkali barium borosilicate glass: time resolved photoluminescence (TRPL) and Judd-Ofelt analysis. J Non-Cryst Solids 386:115–120

    Article  CAS  Google Scholar 

  15. Deptuła A, Miłkowska M, Łada W, Olczak T, Wawszczak D, Smolinski T, Brykala M, Chmielewski AG, Zaza F, Goretta KC (2012) Vitrification of nuclear wastes by complex sol–gel process. Adv Mater Res 518(523):3216–3220

    Article  Google Scholar 

  16. Vance ER (1986) Sol–gel production of titanosilicate glass-ceramics for nuclear waste immobilisation. J Mater Sci. 21:1413–1416

    Article  CAS  Google Scholar 

  17. Darmanyan A.P, Khudyakov I.V. (1990) Study of luminescent forms of uranyl ion. Photochem. Photobio. 52: 293–298

  18. Mohapatra M, Natarajan V (2014) Speciation of uranium in solids using time resolved photoluminescence technique. J Radioanal Nucl Chem 302:1327–1332

    Article  CAS  Google Scholar 

  19. Reeder RJ, Nugent M, Lamble GM, Tait CD, Morris DE (2000) Uranyl incorporation into calcite and argonite: XAFS and luminescence studies. Environ sci Technol 34:638–664

    Article  CAS  Google Scholar 

  20. Bleijenberg KC (1980) Luminescence properties of uranate centres in solids. Struct Bond 42:97–128

    Article  CAS  Google Scholar 

  21. Mohapatra M, Rajeswari B, Kadam RM, Kumar M, Seshagiri TK, Porwal NK, Godbole SV, Natarajan V (2014) Investigation of uranium luminescence in SrB4O7 matrix by time resolved photoluminescence, thermally stimulated luminescence and electron spin resonance spectroscopy. J. Alloys Compds 611:74–81

    Article  CAS  Google Scholar 

  22. Dhobale AR, Mohapatra M, Mishra RK, Kaushik CP, Godbole SV (2010) Photoluminescence and photoacoustic investigations of U and Th in nuclear waste glass. Int J Appl Glass Sci 1:322–329

    Article  CAS  Google Scholar 

  23. Stumpf T, Fernandes MM, Walther C, Dardenne K, Fanghänel Th (2006) Structural characterisation of americum incoporated into calcite: a TRLFS and EXAFS study. J Colloid Interface Sci 302:240–245

    Article  CAS  Google Scholar 

  24. Yusov AB (1990) Photoluminescence of americium(III) in aqueous and organic solutions. J Radioanal Nucl Chem 143:287–294

    Article  CAS  Google Scholar 

  25. Assefa Z, Yaita T, Haire RG, Tachi S (2003) Photoluminescence and Raman studies of curium and americium complexes of 6-Methyl 2-(2-Pyridyl)-benzimidazole: evidence for an efficient intramolecular energy transfer. Inorg Chem 42:7375–7377

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to Dr. S. V. Godbole, former Head, Spectroscopy section, RCD and Dr. A. R. Dhobale, RCD for useful discussion and suggestions during the work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mohapatra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, M., Natarajan, V. & Tomar, B.S. Speciation of U and Am in sol–gel derived borosilicate glasses by photoluminescence lifetime spectroscopy. J Radioanal Nucl Chem 308, 347–350 (2016). https://doi.org/10.1007/s10967-015-4499-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4499-1

Keywords

Navigation