Skip to main content
Log in

In situ and laboratory measurements for radon transport process study

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Characteristics of radon transport in porous media were studied through both in situ and lab-scale measurements. In situ measurements of radon activity concentration, together with soil thoron and carbon dioxide efflux, were carried out on Mt. Etna volcano. More detailed information on radon transport mechanisms has been obtained from laboratory measurements. In particular, we report the first results of a systematic study carried out at the University of Catania (Italy) by means of a facility consisting of a large cylindrical stainless steel vessel, homogeneously filled with different materials. Radon concentration vertical profiles were extracted in low-moisture samples for different advective fluxes, temperatures and porosities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mudd GM (2008) Radon releases from Australian uranium mining and milling projects: assessing the UNSCEAR approach. J Environ Radioact 99:288–315

    Article  CAS  Google Scholar 

  2. Wattananikorn K, Techakosit S, Jitaree N (1995) A combination of soil gas radon measurements in uranium exploration. Nucl Geophys 9(6):643–652

    CAS  Google Scholar 

  3. Hernandez P, Perez N, Salazar J, Reimer M, Notsu K, Wakita K (2004) Radon and helium in soil gases at Canadas caldera, Tenerife, Canary Islands, Spain. J Volcanol Geotherm Res 131:59–76

    Article  CAS  Google Scholar 

  4. Baykara O, Inceoz M, Dogru M, Aksoy E, Hulahci F (2009) Soil radon monitoring and anomalies in East Anatolian fault system. J Radioanal Nucl Chem 279(1):159–164

    Article  CAS  Google Scholar 

  5. Namvaran M, Negarestani A (2013) Measuring the radon concentration and investigating the mechanism of decline prior an earthquake (Jooshan, SE of Iran). J Radioanal Nucl Chem 298:1–8

    Article  CAS  Google Scholar 

  6. Morelli D, Di Martino S, Immé G, La Delfa S, Lo Nigro S, Patané G (2006) Evidence of soil radon as tracer of magma uprising in Mt. Etna. Radiat Meas 41:721–725

    Article  CAS  Google Scholar 

  7. Immé G, La Delfa S, Lo Nigro S, Morelli D, Patané G (2006) Soil radon concentration and volcanic activity on Mt. Etna before and after the 2002 eruption. Radiat Meas 41:241–245

    Article  Google Scholar 

  8. Zahorowski W, Chambers SD, Henderson-Sellers A (2004) Ground based radon-222 observations and their application to atmospheric studies. J Environ Radioact 76:3–33

    Article  CAS  Google Scholar 

  9. Chauhan RP, Chakarvarti SK (2002) Radon diffusion through soil and fly ash: effect of compaction. Radiat Meas 35:143–146

    Article  CAS  Google Scholar 

  10. Mujahid SA, Hussain S, Dogar AH, Karim S (2005) Determination of porosity of different materials by radon diffusion. Radiat Meas 40:106–109

    Article  CAS  Google Scholar 

  11. Azzaro R (1999) Earthquake surface faulting at Mount Etna volcano (Sicily) and implications for active tectonics. J Geodyn 28:193–213

    Article  Google Scholar 

  12. La Delfa S, Patané G, Clocchiatti R, Joron J-L, Tanguy JC (2001) Activity of Mount Etna preceding the February 1999 fissure eruption: inferred mechanisms from seismological and geochemical data. J Volcanol Geotherm Res 105:121–139

    Article  CAS  Google Scholar 

  13. Azzaro R, D’Amico S, Peruzza L, Tuvé T (2012) Earthquakes and faults at Mt. Etna (southern Italy): problems and perspectives for a time-dependent probabilistic seismic hazard assessment in a volcanic region. Boll Geofis Teor Appl 53:75–88

    Google Scholar 

  14. Burton M, Neri M, Condarelli D (2004) High spatial resolution radon measurements reveal hidden active faults on Mt. Etna. Geophys Res Lett 31:L07618. doi:10.1029/2003GL019181

    Google Scholar 

  15. D’Alessandro W, De Domenico R, Parello F, Valenza M (1992) Soil degassing in tectonically active areas of Mt. Etna. Acta Vulc 2:175–183

    Google Scholar 

  16. Giammanco S, Gurrieri S, Valenza M (1995) Soil CO2 degassing on Mt. Etna (Sicily) during the period 1989–1993: discrimination between climatic and volcanic influence. Bull Volcanol 57:52–60

    Google Scholar 

  17. Bruno N, Caltabiano T, Giammanco S, Romano R (2001) Degassing of SO2 and CO2 at Mount Etna (Sicily) as an indicator of pre-eruptive ascent and shallow emplacement of magma. J Volcanol Geotherm Res 110:137–153

    Article  CAS  Google Scholar 

  18. Immé G, Morelli D, Aranzulla M, Catalano R, Mangano G (2013) Nuclear track detector characterization for alpha-particle spectroscopy. Radiat Meas 50:253–257

    Article  Google Scholar 

  19. Giammanco S, Sims KWW, Neri M (2007) Measurements of 220Rn and 222Rn and CO2 emissions in soil and fumaroles gases on Mt. Etna volcano (Italy): implications for gas transport and shallow ground fracture. Geochem Geophys Geosyst 8:1–14. doi:10.1029/2007GC001644

    Article  Google Scholar 

  20. Ferrara V (1975) Idrogeologia del fianco orientale dell’Etna. In: Proceedings of the Third International Congress on Underground Waters, Palermo, p 91–144

  21. Neri M, Giammanco S, Ferrara E, Patanè G, Zanon V (2011) Spatial distribution of soil radon as a tool to recognize active faulting on an active volcano: the example of Mt. Etna. J Environ Radioact 102:863–870

    Article  CAS  Google Scholar 

  22. Giammanco S, Immé G, Mangano G, Morelli D, Neri M (2009) Comparison between different methodologies for detecting radon in soil along an active fault: the case of the Pernicana fault system, Mt. Etna (Italy). Appl Radiat Isot 67:178–185

    Article  CAS  Google Scholar 

  23. Bonforte A, Federico C, Giammanco S, Guglielmino F, Liuzzo M, Neri M (2013) Soil gases and SAR measurements reveal hidden faults on the sliding flank of Mt. Etna (Italy). J Volcanol Geotherm Res 251:27–40

    Article  CAS  Google Scholar 

  24. Jönsson G (2001) Soil radon depth dependence. Radiat Meas 34:415–418

    Article  Google Scholar 

  25. Van der Graaf ER (1992) Orientation of the radon vessel and determination of the multifunctional measuring probes. Technical Report RV-03, KVI, Zernikeelan 25, 9747, AA, Groningen, The Netherlands

  26. Andersen CE (2001) Numerical modelling of radon-222 entry into houses: an outline of techniques and results. Sci Total Environ 272:33–42

    Article  CAS  Google Scholar 

  27. Hassan NM (2014) Radon emanation coefficient and its exhalation rate of wasted petroleum samples associated with petroleum industry in Egypt. J Radioanal Nucl Chem 299:111–117

    Article  CAS  Google Scholar 

  28. Abu-Jarad F (1988) Application of nuclear track detectors for radon related measurements. Nucl Tracks Radiat Meas 15(1):525–534

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Catalano.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catalano, R., Immé, G., Mangano, G. et al. In situ and laboratory measurements for radon transport process study. J Radioanal Nucl Chem 306, 673–684 (2015). https://doi.org/10.1007/s10967-015-4336-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4336-6

Keywords

Navigation