Skip to main content
Log in

Sorption behavior of Np(V) on illite, shale and MX-80 in high ionic strength solutions

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

Sorption of Np(V) on illite, shale and MX-80 under oxidizing conditions were first studied in two types of high ionic strength solutions: (i) a reference brine solution (SR-270-PW) with an ionic strength of 6.0 M, and (ii) Na–Ca–Cl solutions. The effects of pHc, Na/Ca ratio, and ionic strength on Np(V) sorption in Na–Ca–Cl solutions were investigated. The K d values and the sorption isotherms in SR-270-PW and Na–Ca–Cl solutions were also evaluated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Hobbs M Y, Frape S K, Shouakar-Stash O, Kennel LR (2011) Regional hydrogeochemistry—Southern Ontario, NWMO DGR-TR-2011-12, Toronto, Canada

  2. Vilks P (2011) Sorption of selected radionuclides on sedimentary rocks in saline conditions—literature review, Nuclear Waste Management Organization technical report NWMO TR-2011-12, Toronto, Canada

  3. Geckeis H, Lützenkirchen J, Polly R, Rabung T, Schmidt M (2013) Mineral-water interface reactions of actinides. Chem Rev 113:1016–1062

    Article  CAS  Google Scholar 

  4. Zavarin M, Powell BA, Bourbin M, Zhao PH, Kersting AB (2012) Np(V) and Pu(V) ion exchange and surface-mediated reduction mechanisms on montmorillonite. Environ Sci Technol 46:2692–2698

    Article  CAS  Google Scholar 

  5. Chapman N, Apted M, Aspinall W, Berryman K, Cloos M, Connor C, Connor L, Jaquet O, Kiyosugi K, Scourse E, Sparks S, Stirling M, Wallace L, Goto J (2012) TOPAZ Project long-term tectonic hazard to geological repositories. Nuclear Waste Management Organization of Japan technical report NUMO-TR-12-05, Tokyo, Japan

  6. Ahn T, Ikeda T, Ohe T, Kanno T, Sakamoto Y, Chiba T, Tsukamoto M, Nakayama S, Nagasaki S, Banno K, Fujita T (1995) Quantitative performance allocation of multi-barrier system for HLW disposal. J At Energy Soc Jpn 37:59–77 (in Japanese)

    Article  CAS  Google Scholar 

  7. National Academy of Science (1983) A study of the isolation for geologic disposal of radioactive wastes, Waste Isolation Systems Panels, Board on Radioactive Waste Management, Washington DC, USA

  8. Vilks P (in preparation) Sorption of selected radionuclides on sedimentary rocks in saline conditions—updated sorption values. Nuclear Waste Management Organization technical report, Toronto, Canada

  9. Neck V, Kim JI (2001) Solubility and hydrolysis of tetravalent actinides. Radiochim Acta 89:1–16

    Article  CAS  Google Scholar 

  10. Japan Atomic Energy Agency (2000) H12: Project to establish the scientific and technical basis for HLW disposal in Japan, Supporting report 3: Safety assessment of the geological disposal system. The Japan Nuclear Cycle Development Institute technical note, JNC TN 1410 2000-004, Tokyo, Japan

  11. Choppin GR (2006) Environmental behavior of actinides. Czechoslovak J Phys 56:D13–D21

    Article  CAS  Google Scholar 

  12. Itagaki H, Nakayama S, Tanaka S, Yamawaki M (1992) Effect of ionic strength on the solubility of neptunium(V) hydroxide. Radiochim Acta 58(59):61–66

    Google Scholar 

  13. Nagasaki S, Tanaka S, Suzuki A (1998) Geochemical behavior of actinides in high-level radioactive waste disposal. Prog Nucl Energy 32:141–161

    Article  CAS  Google Scholar 

  14. Marsac R, Lal Banik N, Lützenkirchen J, Marquardt CM, Dardenne K, Schild D, Rothe J, Diascorn A, Kupcik T, Schäfer T, Geckeis H (2015) Neptunium redox speciation at the illite surface. Geochim et Cosmochim Acta 152:39–51

    Article  CAS  Google Scholar 

  15. Altmaier M, Gaona X, Fanghänel Th (2013) Recent advances in aqueous actinide chemistry and thermodynamics. Chem Rev 113:901–943

    Article  CAS  Google Scholar 

  16. Knope KE, Soderholm L (2013) Solution and solid-state structural chemistry of actinide hydrates and their hydrolysis and condensation product. Chem Rev 113:944–994

    Article  CAS  Google Scholar 

  17. Walther C, Denecke A (2013) Actinide colloids and particles of environmental concern. Chem Rev 113:995–1015

    Article  CAS  Google Scholar 

  18. Yoshida Z, Johnson SG, Kimura T, Krsul JR (2010) Neptunium. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements, vol 2, 4th edn. Springer, Dordrecht, pp 699–812

    Chapter  Google Scholar 

  19. Choppin GR, Jensen MP (2010) Actinides in solution: complexation and kinetics. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements, vol 4, 4th edn. Springer, Dordrecht, pp 2524–2621

    Chapter  Google Scholar 

  20. Runde W, Neu MP (2010) Actinides in the geosphere. In: Morss LR, Edelstein NM, Fuger J (eds) The chemistry of the actinide and transactinide elements, vol 6, 4th edn. Springer, Dordrecht, pp 3475–3593

    Chapter  Google Scholar 

  21. Kar AS, Kumar S, Tomar BS (2012) U(VI) sorption by silica: effect of complexing anions. Colloid Surf A 395:240–247

    Article  CAS  Google Scholar 

  22. Zhu WB, Liu ZJ, Chen L, Dong YH (2012) Sorption of uranium(VI) on Na-attapulgite as a function of contact time, solid content, pH, ionic strength, temperature and humic acid. J Radioanal Nucl Chem 289:781–788

    Article  Google Scholar 

  23. Tertre E, Pret D, Ferrage E (2011) Influence on the ionic strength and solid/solution ratio on Ca(II)-for-Na+ exchange on montmorillonite. Part 1: chemical measurements, thermodynamic modeling and potential implications for trace elements geochemistry. J Colloid Interface Sci 353:248–256

    Article  CAS  Google Scholar 

  24. Amayri S, Jermolajev A, Reich T (2011) Neptunium(V) sorption on kaolinite. Radiochim Acta 99:349–357

    Article  CAS  Google Scholar 

  25. Schmeide K, Bernhard G (2010) Sorption of Np(V) and Np(VI) onto kaolinite: effects of pH, ionic strength, carbonate and humic acid. Appl Geochem 25:1238–1247

    Article  CAS  Google Scholar 

  26. Schlegel ML, Descostes M (2009) Uranium uptake by hectorite and montmorillonite: a solution chemistry and polarized EXAFS study. Environ Sci Technol 43:8593–8598

    Article  CAS  Google Scholar 

  27. Schnurr A, Marsac R, Rabung Th, Lutzenkirchen J, Geckeis H (2015) Sorption of Cm(III) and Eu(III) onto clay minerals under saline conditions: batch adsorption, laser-fluorescence spectroscopy and modeling. Geochim et Cosmochim Acta 151:192–202

    Article  CAS  Google Scholar 

  28. Vilks P, Miller NH (2013) Sorption studies with sedimentary rock under saline conditions. Nuclear Waste Management Organization technical report, NWMO TR-2013-23, Toronto, Canada

  29. U. S. Environmental Protection Agency (1998) Assessment of K ds used in the CCA, Technical support document for Section 194.14: DOCKET NO: A-93-02 V-B-4, Washington DC, USA

  30. Warnecke E, Hollmann A, Tittel G, Brennecke P (1994) Gorleben radionuclide migration experiments: more than 10 years of experience. Radiochim Acta 66(67):821–827

    Google Scholar 

  31. Lieser KH, Muhlenweg U (1988) Neptunium in the hydrosphere and in the geosphere. Radiochim Acta 44(45):129–133

    Google Scholar 

  32. Laul JC, Smith MR, Hubbard N (1985) Behaviour of natural uranium, thorium, and radium isotopes in the Wolfcamp brine aquifers, Palo Doro Basin. Mater Res Soc Symp Proc 44(Scientific Basis for Nuclear Waste Management VIII):475–482

    CAS  Google Scholar 

  33. Mucciardi AN, Johnson TC, Saunier J (1979) Statistical investigation of the mechanics controlling radionuclide sorption. Annual report, Battelle-Pacific Northwest Laboratories, ADI Ref. 548, Richland, USA

  34. Hower J, Mowatt TC (1966) The mineralogy of illites and mixed layer illite-montmorillonite. Am Miner 51:825–854

    CAS  Google Scholar 

  35. Kirishima A, Tochiyama O, Tanaka K, Niibori Y, Mitsugashira T (2003) Redox speciation method for neptunium in a wide range of concentrations. Radiochim Acta 91:191–196

    Article  CAS  Google Scholar 

  36. Kirishima A (2014) Private communication

  37. Fanghänel Th, Neck V, Kim JI (1996) The ion product of H2O, dissociation constants of H2CO3 and Pitzer parameters in the system Na+/H+/OH/HCO3 /CO3 2−/ClO4 /H2O at 25 °C. J Sol Chem 25:327–343

    Article  Google Scholar 

  38. Altmaier M, Metz V, Neck V, Müller R, Fanghänel Th (2003) Solid-liquid equilibria of Mg(OH)2(cr) and Mg2(OH)3Cl·4H2O(cr) in the system Mg–Na–H–OH–Cl–H2O at 25 & #xB0;C. Geochim et Cosmochim Acta 67:3595–3601

    Article  CAS  Google Scholar 

  39. Altmaier M, Neck V, Fanghänel Th (2008) Solubility of Zr(IV), Th(IV) and Pu(IV) hydrous oxides in CaCl2 solutions and the formation of ternary Ca–M(IV)–OH complexes. Radiochim Acta 96:541–550

    Article  Google Scholar 

  40. Nagasaki S, Tanaka S, Todoriki M, Suzuki A (1998) Surface sorption and surface diffusion of NpO2 + with poorly crystallized ferric oxide. J Alloy Compd 271–273:252–256

    Article  Google Scholar 

  41. Snow MS, Zhao P, Dai Z, Kersting AB, Zavarin M (2013) Neptunium(V) sorption to goethite at attomolar to micromolar concentrations. J Colloid Interface Sci 390:176–182

    Article  CAS  Google Scholar 

  42. Nagasaki S, Tanaka S (1998) Sorption equilibrium and kinetics of NpO2 + uptake onto illite. Radiochim Acta 82:263–267

    Article  CAS  Google Scholar 

  43. Nagasaki S, Tanaka S (2000) Sorption equilibrium and kinetics of NpO2 + on dispersed particles of Na-montmorillonite. Radiochim Acta 88:705–709

    Article  CAS  Google Scholar 

  44. Tachi Y, Shibutani T, Sato H, Shibata M (1999) Sorption and diffusion behavior of palladium in bentonite, granodiorite and tuff. The Japan Nuclear Cycle Development Institute technical note, JNC TN 8400, Tokyo, Japan

  45. Wang XK, Rabung Th, Geckeis H, Panak PJ, Klenze R, Fanghäenel Th (2004) Effect of humic acid on the sorption of Cm(III) onto γ-Al2O3 studied by the time resolved laser fluorescence spectroscopy. Radiochim Acta 92:691–695

    Article  CAS  Google Scholar 

  46. Li Y, Wang C, Guo Z, Liu C, Wu W (2014) Sorption of thorium(IV) from aqueous solutions by graphene oxide. J Radioanal Nucl Chem 299:1683–1691

    Article  CAS  Google Scholar 

  47. Wu W, Fan Q, Xu J, Niu Z, Lu S (2007) Adsorption of Th(IV) on attapulgite: effects of pH, ionic strength, and temperature. Appl Radiat Isot 65:1108–1114

    Article  CAS  Google Scholar 

  48. Gorgeon L (1994) Contribution à la modélisation physico-chimique de la rétention de radioéléments à vie longue par des matériaux argileux, Ph.D. Dessertation, Université Paris 6

  49. Torstenfelt B, Rundberg RS, Mitchell AJ (1988) Actinide sorption on granites and minerals as a function of pH and colloids/psuedocolloids. Radiochim Acta 44(45):111–117

    Google Scholar 

  50. Bradbury MH, Baeyens B (2005) Modelling the sorption of Mn(II), Co(II), Ni(II), Zn(II), Cd(II), Eu(III), Am(III), Sn(IV), Th(IV), Np(V) and U(VI) on montrmorillonite: linear free energy relationships and estimates of surface binding constants for some selected heavy metals and actinides. Geochim et Cosmochim Acta 69:875–892

    Article  CAS  Google Scholar 

  51. Bradbury MH, Baeyens B (2009) Sorption modeling on illite. Part II: actinide sorption and linear free energy relationships. Geochim et Cosmochim Acta 73:1004–1013

    Article  CAS  Google Scholar 

  52. Kitamura A, Tomura T (2003) Sorption behaviour of neptunium onto smectite under reducing conditions in carbonate media. Japan Nuclear Cycle Development Institute technical note, JNC TN8400 2003-25 (in Japanese)

  53. Stammose D, Ly J, Pitsch H, Dolo JM (1992) Sorption mechanisms of three actinides on a clayey mineral. Appl Clay Sci 7:225–238

    Article  CAS  Google Scholar 

  54. Kitamura A, Doi R, Yoshida Y (2014) Update of JAEA-TDB: update of thermodynamic data for palladium and tin, refinement of thermodynamic data for protactinium, and preparation of PHREEQC database for use of the Brønsted-Guggenheim-Scatchard model. Japan Atomic Energy Agency, JAEA-Data/Code 2014-009, Tokai, Japan

  55. Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC (Version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, U.S. Geological Survey, Water Resources Investigations Report 99-4259

  56. Turner DR, Pablan RT, Bertetti FP (1998) Neptunium(V) sorption on montrmorillonite: an experimental and surface complexation modeling study. Clays Clay Miner 46:256–269

    Article  CAS  Google Scholar 

  57. Sakamoto Y, Konishi M, Shirahashi K, Senoo M, Moriyama N (1990) Adsorption behavior of neptunium for soil. Radiact Waste Manage Nucl Fuel Cycle 15:13–25

    CAS  Google Scholar 

  58. Higgo JJW, Rees LVC, Cronan DS (1983) Sorption of americium and neptunium by deep-sea sediments. Radiact Waste Manag Nucl Fuel Cycle 4:73–102

    CAS  Google Scholar 

  59. Morgan RD, Pryke DC, Rees JH (1988) Data for the sorption of actinides on candidate materials for use in repository. UK Department of Environment Report, DOE/RW/87.094

Download references

Acknowledgments

This work is funded by the Nuclear Waste Management Organization and the Natural Science and Engineering Research Council of Canada, Discovery Grant Program (RGPIN-2014-05732). The authors wish to acknowledge Dr. Akira Kirishima (Tohoku University) for his valuable comments on the spectroscopic measurement, the molar absorption coefficient of Np(V), and the Np oxidation state adjustment to Np(V). The authors would like to thank Dr. Monique Hobbs of NWMO for valuable discussion and review of this manuscript. The constructive and valuable reviews by two anonymous referees are highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinya Nagasaki.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagasaki, S., Saito, T. & Yang, T.T. Sorption behavior of Np(V) on illite, shale and MX-80 in high ionic strength solutions. J Radioanal Nucl Chem 308, 143–153 (2016). https://doi.org/10.1007/s10967-015-4332-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-015-4332-x

Keywords

Navigation