Skip to main content
Log in

FTIR spectroscopy in the characterization of the mixture of nuclear grade cation and anion exchange resins

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

The practice of using the mixed bed resin (mixture of cation and anion exchange resin) in removing the ionic impurities is widely adopted in various plants including the nuclear reactors. The determination of the mixing ratio by the conventional method exhibits several disadvantages (while the ratio is far from unity, poor color difference between the components and low sample volume etc.). A FTIR based spectroscopic method has been proposed here for the rapid analysis (semi-quantitative) of the mixing ratio and applied on the mixture of nuclear grade cation and anion resin to overcome the difficulties faced by the conventional procedure. The possibility of quantification has also been proposed by extending the present methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kunin R (1958) Ion exchange resins. Wiley, London

    Google Scholar 

  2. Helfferich F (1962) Ion exchange. McGraw-Hill, New York

    Google Scholar 

  3. Konrad D (1991) Ion exchangers. Walter de Gruyter. Berlin, New York

    Google Scholar 

  4. Harland CE (1994) Ion exchange: theory and practice, 2nd edn. The Royal Society Chemistry, Cambridge

    Google Scholar 

  5. Zagorodni AA (2007) Ion exchange materials properties and applications. Elsevier, Amsterdam

    Google Scholar 

  6. International Atomic Energy Agency (2002) Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers (technical reports series no. 408), International Atomic Energy Agency, Vienna

  7. Flores-Espinosa RM, Ortíz-Oliveros HB, Olguín MT, Perusquia-Cueto, Gallardo-San-Vicente R (2012) Separation and treatment of ion-exchange resins used in cleaning systems of a research nuclear reactor. Chem Eng J 188:71–76

    Article  CAS  Google Scholar 

  8. Lin KH (1973) Use of ion exchange for the treatment of liquids in nuclear power plants, Report ORNL-4792. Oak Ridge, TN

    Book  Google Scholar 

  9. Ion exchange resin for nuclear power industry (1997) Filtr Sep 34(7):640

  10. Bennett A (2007) High purity water: advances in ion exchange technology. Filtr Sep 44(6):20–23

    Article  Google Scholar 

  11. Perie M, Perie J, Chemla M (1991) Nuclear grade resin: kinetics of isotopic and ionic exchanges for borate and chloride anions. J Electroanal Chem 303(1–2):105–124

    Article  CAS  Google Scholar 

  12. Singare PU (2014) Radiotracers in performance evaluation of nuclear grade resins Amberlite IRN-78 and Purolite NRW-8000. Kerntechnik 79:51–57

    Article  CAS  Google Scholar 

  13. Gregor HP (1951) Gibbs-Donnan equilibria in ion exchange resin systems. J Am Chem Soc 73(2):642–650

    Article  CAS  Google Scholar 

  14. Gregor HP, Bregman JI, Gutoff F, Broadley RD, Baldwin DE, Overberger CG (1951) Studies on ion-exchange resins. Capacity of sulfonic acid cation-exchange resins. J Colloid Sci 6(1):20–32

    Article  CAS  Google Scholar 

  15. Gregor HP, Bregman JI (1951) Studies on ion-exchange resins. IV. Selectivity coefficients of various cation exchangers towards univalent cations. J Colloid Sci 6(4):323–347

    Article  CAS  Google Scholar 

  16. Gregor HP, Sundheim BR, Held KM, Waxman MH (1952) Studies on ion-exchange resins. V. Water vapor sorption. J Colloid Sci 7(5):511–534

    Article  CAS  Google Scholar 

  17. Strasheim A, Buijs K (1961) Infra-red spectra of ion-exchangers on polystyrene base. Spectrochim Acta 17(4):388–392

    Article  CAS  Google Scholar 

  18. Parrish JR (1975) Quantitative analysis of cation-exchange resins by infrared spectrophotometryand pyrolysis-gas chromatography. Anal Chem 47(12):1999–2003

    Article  CAS  Google Scholar 

  19. Bartholin M (1981) Styrene-divinylbenzene copolymers, 3 revisited IR analysis. Makromol Chem 182:2075–2085

    Article  CAS  Google Scholar 

  20. van Raij B, Quaggio JA, da Silva NM (1986) Extraction of phosphorus, potassium, calcium, and magnesium from soils by an ion-exchange resin procedure. Commun Soil Sci Plant Anal 17(5):547–566

    Article  Google Scholar 

  21. Rengaraj S, Yeon KH, Moon SH (2001) Removal of chromium from water and wastewater by ion exchange resins. J Hazard Mater 87(1–3):273–287

    Article  CAS  Google Scholar 

  22. Yeon KH, Seong JH, Rengaraj S, Moon SH (2003) Electrochemical characterization of ion-exchange resin beds and removal of cobalt by electrodeionization for high purity water production. Sep Sci Technol 38(2):443–462

    Article  CAS  Google Scholar 

  23. Liang Z, Chen W, Liu J, Wang S, Zhou Z, Li W, Sun G, Xin Q (2004) FT-IR study of the microstructure of Nafion membrane. J Membr Sci 233(1):39–44

    Article  CAS  Google Scholar 

  24. Lokhande RS, Singare PU, Dole MH (2006) Comparative study on bromide and iodide ion-isotopic exchange reactions using strongly basic anion exchange resin Duolite A-113. J Nucl Radiochem Sci 7(2):29–32

    Article  CAS  Google Scholar 

  25. Meenakshi S, Viswanathan N (2007) Identification of selective ion-exchange resin For fluoride sorption. J Colloid Interface Sci 308(2):438–450

    Article  CAS  Google Scholar 

  26. Alexandratos SD (2009) Ion-exchange resins: a retrospective from industrial and engineering chemistry research. Ind Eng Chem Res 48(1):388–398

    Article  CAS  Google Scholar 

  27. Malik MA (2009) Carbonyl groups in sulfonated styrene-divinylbenzene macroporous resins. Ind Eng Chem Res 48(15):6961–6965

    Article  CAS  Google Scholar 

  28. Ezzeldin H A, Apblett A, Foutch G L (2010) Synthesis and properties of anion exchangers derived from chloromethyl styrene codivinylbenzene and their use in water treatment. Int J Polym Sci 2010:684051

  29. Siminiceanu I, Marchitan N, Duca G, Mereuta A (2010) Mathematical models based on thermodynamic equilibrium and kinetics of an ion exchange process. Rev Chim 61:623–626

    CAS  Google Scholar 

  30. Singare PU, Lokhande RS, Madyal RS (2011) Thermal degradation studies of some stronglyacidic cation exchange resins. Open J Phys Chem 1:45–54

    Article  CAS  Google Scholar 

  31. Traboulsi A, Dupuy N, Rebufa C, Sergent M, Labed V (2012) Investigation of gamma radiation effect on the anion exchange resin Amberlite IRA-400 in hydroxide form by Fourier transformed infrared and 13C nuclear magnetic resonance spectroscopies. Anal Chim Acta 717:110–121

    Article  CAS  Google Scholar 

  32. Ozer O, Ince A, Karagoz B, Bicak N (2013) Crosslinked PS-DVB microspheres with sulfonated polystyrene brushes as new generation of ion exchange resins. Desalination 309(1):141–147

    Article  CAS  Google Scholar 

Download references

Acknowledgments

It is a pleasure to thank Dr. P. V. Varde and R. C. Sharma (Reactor Group, BARC, India) for their interest and encouragement in carrying out the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satinath Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, S., Dhole, K., Tripathy, M.K. et al. FTIR spectroscopy in the characterization of the mixture of nuclear grade cation and anion exchange resins. J Radioanal Nucl Chem 304, 917–923 (2015). https://doi.org/10.1007/s10967-014-3906-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3906-3

Keywords

Navigation