Skip to main content
Log in

Advanced gamma spectrum processing technique applied to the analysis of scattering spectra for determining material thickness

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

In this work, an advanced gamma spectrum processing technique is applied to analyze experimental scattering spectra for determining the thickness of C45 heat-resistant steel plates. The single scattering peak of scattering spectra is taken as an advantage to measure the intensity of single scattering photons. Based on these results, the thickness of steel plates is determined with a maximum deviation of real thickness and measured thickness of about 4 %. Monte Carlo simulation using MCNP5 code is also performed to cross check the results, which yields a maximum deviation of 2 %. These results strongly confirm the capability of this technique in analyzing gamma scattering spectra, which is a simple, effective and convenient method for determining material thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mullin SK, Hussein EMA (1994) A Compton-scatter spectrometry technique for flaw detection. Nucl Instrum Methods A 353:663–667

    Article  CAS  Google Scholar 

  2. Barnea G, Dick CE, Ginzburg A, Navon E, Seltzer SM (1995) A study of multiple scattering background in Compton scatter imaging. NDTE Int 28:155–162

    Article  Google Scholar 

  3. Shengli N, Jun Z, Liuxing H (2000) In: Proceedings of the second international workshop on EGS4. ESG4 simulation of compton scattering for nondestructive testing. Tsukuba, 8–12 August, p 216

  4. Paramesh L, Venkataramaiah L, Gopala K, Sanjeeviah H (1983) Z–dependence of saturation depth for multiple backscatteing of 662 keV photons from thick samples. Nucl Instrum Methods 206:327–330

    Article  CAS  Google Scholar 

  5. Singh M, Singh G, Sandhu BS, Singh B (2006) Effect of detector collimator and sample thickness on 0.662 MeV multiply Compton-cattered gamma rays. Appl Radiat Isot 64:373–378

    Article  CAS  Google Scholar 

  6. Singh M, Singh G, Singh B, Sandhu BS (2006) Energy and intensity distributions of multiple Compton scattering of 0.279-, 0.662-, and 1.12-MeV γ rays. Phys Rev A 74:042714 (1–9)

    Google Scholar 

  7. Priyada P, Margret M, Ramar R, Shivaramu, Menaka M, Thilagam L, Venkataraman B, Raj B (2011) Intercomparison of gamma scattering, gammatography, and radiography techniques for mild steel nonuniform corrosion detection. Rev Sci Instrum 82:035115 (1–8)

    Article  Google Scholar 

  8. Ruellan H, Lépy MC, Etcheverry M, Plagnard J, Morel J (1996) A new spectra processing code applied to the analysis of 235U and 238U in the 60 to 200 keV energy range. Nucl Instrum Methods A 369:651–656

    Article  CAS  Google Scholar 

  9. NIST (2013) XCOM: photon cross sections database. http://www.nist.gov/pml/data/xcom/index.cfm. Accessed 1 Nov 2013

  10. Fernández JE (1991) Compton and Rayleigh double scattering of unpolarized radiation. Phys Rev A 44:4232–4248

    Article  Google Scholar 

  11. Hoang SMT, Yoo S, Sun GM (2010) Experimental validation of the backscattering gamma-ray spectra with the Monte Carlo code. Nucl Eng Technol. doi:10.5516/NET.2011.43.1.013

    Google Scholar 

  12. Shi HX, Chen BX, Li TZ, Yun D (2002) Precise Monte Carlo simulation of gamma-ray response functions for an NaI(Tl) detector. Appl Radiat Isot 57:517–524

    Article  CAS  Google Scholar 

  13. Amgarou K, Domingo C, Bouassoule T, Fernández F (2009) Monte Carlo simulation of the NaI(Tl) detector response to measure gold activated foils. Nucl Instrum Methods B 267:2944–2951

    Article  CAS  Google Scholar 

  14. Kovaltchouk V, Machrafi R (2011) Monte Carlo simulations of response functions for gas filled and scintillator detectors with MCNPX code. Ann Nucl Energy 38:788–793

    Article  CAS  Google Scholar 

  15. Baccouche S, Al-Azmi D, Karunakara N, Trabelsi A (2012) Application of the Monte Carlo method for the efficiency calibration of CsI and NaI detectors for gamma-ray measurements from terrestrial samples. Appl Radiat Isot 70:227–232

    Article  CAS  Google Scholar 

  16. Casanovas R, Morant JJ, Salvadó M (2012) Temperature peak-shift correction methods for NaI(Tl) and LaBr 3(Ce) gamma-ray spectrum stabilisation. Radiat Meas 47:588–595

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Vietnamese Ministry of Industry of Trade, VNUHCM-University of Science and Ho Chi Minh City University of Pedagogy for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tran Thien Thanh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tam, H.D., Chuong, H.D., Thanh, T.T. et al. Advanced gamma spectrum processing technique applied to the analysis of scattering spectra for determining material thickness. J Radioanal Nucl Chem 303, 693–699 (2015). https://doi.org/10.1007/s10967-014-3378-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3378-5

Keywords

Navigation