Skip to main content
Log in

Purification of 89Sr source obtained from 89Y(n, p) 89Sr by ion-exchange chromatography using tri-sodium tri-meta phosphate (SMP) as eluant

  • Published:
Journal of Radioanalytical and Nuclear Chemistry Aims and scope Submit manuscript

Abstract

89Sr was produced via 89Y(n, p) 89Sr using yttria as target in Fast Breeder Test Reactor (FBTR), Kalpakkam, India. A radiochemical procedure has been developed for the separation of bulk yttrium using TBP by solvent extraction followed by purification of 89Sr source by ion exchange chromatography using the cation exchange resin Dowex 50WX8 (100–200 mesh) and nitric acid of variable molarity as eluant. The present study establishes the purification of 89Sr source from the other radionuclidic impurities like 88Y, 65Zn, 54Mn, 60Co, 86Rb, 192Ir, 103Ru, 113Sn, 139Ce, 160Tb, 154Eu etc. produced during the irradiation of yttria by using the complexing agent tri-sodium tri-meta phosphate (SMP) in nitric acid medium instead of nitric acid alone as an eluant. The purification was achieved by using 0.1 M SMP as complexing agent which was optimized based on the distribution ratio data and final elution of Sr fraction was obtained in nitric acid medium. This resulted into a faster purification of 89Sr source in a smaller volume of eluant. Purity of Sr source from the cross contamination of the complexing agent SMP was also ensured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zweit J (1996) Phys Med Biol 41:1905–1914

    Article  CAS  Google Scholar 

  2. Lewington VJ (2005) J Nucl Med 46:38S–47S

    CAS  Google Scholar 

  3. Lewington VJ (1996) Phys Med Biol 41:2027–2042

    Article  CAS  Google Scholar 

  4. Serafini AN (2001) J Nucl Med 42:895–906

    CAS  Google Scholar 

  5. Taskar NP, Batraki M, Divgi CR (2004) J Nucl Med 45:1358–1365

    Google Scholar 

  6. Hillegonds DJ, Franklin S, Shelton DK, Srinivasan V, Vani V (2007) J Natl Med Assoc 99:785–794

    Google Scholar 

  7. Larson SM, Krenning EP (2005) J Nucl Med 46:1S–3S

    Google Scholar 

  8. Karelin YA, Efimov VN, Filimonov VT, Kuznetsov RA, Revyakin YL, Angreev OI, Zhemkov Y, Bukh VG, Lebedev VM, Spiridonov YN (2000) Appl Radiat Isot 53:825–827

    Article  CAS  Google Scholar 

  9. Saha D, Vithya J, Ashok Kumar GVS, Swaminathan K, Kumar R, Venkata Subramani CR, Vasudeva Rao PR (2013) Radiochim Acta 101:667–673

    CAS  Google Scholar 

  10. Blasius E, Klein W, Schön U (1985) J Radioanal Nucl Chem 89:389–398

    Article  CAS  Google Scholar 

  11. Horwitz EP, Dietz ML, Fisher DE (1990) Solvent Extr Ion Exch 8:557–572

    Article  CAS  Google Scholar 

  12. Horwitz EP, Dietz ML, Fisher DE (1991) Solvent Extr Ion Exch 9:1–25

    Article  CAS  Google Scholar 

  13. Ashok Kumar GVS, Saha D, Vithya J, Swaminathan K, Kumar R, Venkata Subramani CR (2010) Proceedings of international conference on nuclear analytical chemistry, Mumbai A-178

  14. Akseli A, Kutun S (2000) Sep Sci Technol 35:561–571

    Article  CAS  Google Scholar 

  15. Kubota M (1974) J Radioanal Nucl Chem 23:73–82

    Article  CAS  Google Scholar 

  16. Karol P (1975) J Radioanal Nucl Chem 24:17–19

    Article  CAS  Google Scholar 

  17. Zeligman MM (1965) Anal Chem 37:524–525

    Article  CAS  Google Scholar 

  18. Maoliang L, Yongxiang L, Jingyi F (1988) J Radioanal Nucl Chem 123:613–617

    Article  Google Scholar 

  19. Wish L, Foti SC (1965) J Chromatogr 20:585–593

    Article  CAS  Google Scholar 

  20. Campbell DO (1973) J Inorg Nucl Chem 35:3911–3919

    Article  CAS  Google Scholar 

  21. Juang RS, Wang Y-C (2003) Water Res 37:845–852

    Article  CAS  Google Scholar 

  22. Wamanacharya GS (1966) U. S. Atomic Energy Commission, ORNL TM-1342

  23. Abo Farha SA, Badawy NA, El-Bayaa AA, Garamon SE (2010) Nat Sci 8:16–25

    Google Scholar 

  24. Ashok Kumar GVS, Vithya J, Sivakumar B, Saha D, Swaminathan K, Kumar R, Venkata Subramani CR (2011) Proceeding of nuclear and radiochemistry symposium (NUCAR-11), Visakhapatnam, pp 507–508

  25. Akseli A, Kutun S (1999) J Chromatogr A 847:245–250

    Article  CAS  Google Scholar 

  26. Kutun S, Akseli A (1999) J Chromatogr A 847:261–269

    Article  CAS  Google Scholar 

  27. Sungur SK, Akseli A (2000) J Chromatogr A 874:311–317

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the operational personnel of KAMINI reactor and FBTR who helped in the sample irradiation for the above experiments and the Irradiated Fuel Studies Section of Fuel Chemistry Division, IGCAR who helped in the experiments in hot cell facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. R. Venkata Subramani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashok Kumar, G.V.S., Vithya, J., Siva Kumar, B. et al. Purification of 89Sr source obtained from 89Y(n, p) 89Sr by ion-exchange chromatography using tri-sodium tri-meta phosphate (SMP) as eluant. J Radioanal Nucl Chem 302, 803–808 (2014). https://doi.org/10.1007/s10967-014-3253-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10967-014-3253-4

Keywords

Navigation